首页> 外文学位 >New approaches for real-time automated three-dimensional sensing, visualization, and identification of biological microorganisms.
【24h】

New approaches for real-time automated three-dimensional sensing, visualization, and identification of biological microorganisms.

机译:用于实时自动三维感测,可视化和生物微生物识别的新方法。

获取原文
获取原文并翻译 | 示例

摘要

The study of harmful micro/nano biological organisms or other specimens has many potential applications in security and defense or novel disease detection. Therefore, developing reliable, automated, and low-cost methods for real-time sensing, visualization, and identification of harmful pathogens or biological cells are essential in combating catastrophic diseases or for new medical treatments. The optical imaging systems using digital holography have been extensively investigated for three-dimensional (3D) visualization and recognition of rigid objects. In contrast, biological specimens have dynamic activities such as moving, dividing and growing. Consequently, these issues make it difficult to three-dimensionally visualize biological specimens. Moreover, many specimens such as cell parts in protozoans, bacteria, and sperm tails are essentially fully transparent unless stained, killing the specimens. Accordingly, it is insufficient to use the 2D profile of them based on image intensity for their visualization or identification. Phase-contrast techniques have been developed for the non-invasive visualization of the transparent specimens because the difference in densities and composition within them give rise to changes in the phase of light passing through them.; This thesis presents a novel methodology for 3D sensing, imaging, and identification of micro/nano biological organisms. The proposed digital holographic systems provide a real-time 3D recording and visualization of specimens. Statistical pattern recognition algorithms are developed for the optimum classification of specimens. This methodology aims at identifying the 3D images reconstructed from the digital holograms of specimens and recognizing very minute differences in thickness, size, and shape. This methodology develops into the white light in-line (WLI) digital holographic system that has much simple, practical optical setup. The major advantages of the proposed WLI digital holographic system are that it can analyze specimen across the entire spectrum and requires very simple, practical optical setups for 3D recording. In addition, optimal spatial resolution can be obtained by using shorter or applicable wavelengths. The methodologies and algorithms addressed in this thesis are believed to be substantial progress for the automated identification of transparent biological specimens. To the best of the knowledge of the author, this is the first report on using 3D holographic imaging data for optoelectronic identification of micro/nano biological organisms.
机译:有害的微生物/纳米生物或其他标本的研究在安全和防御或新型疾病检测中具有许多潜在应用。因此,开发可靠,自动化和低成本的方法来实时检测,可视化和识别有害病原体或生物细胞,对于战胜灾难性疾病或新的医学治疗至关重要。使用数字全息术的光学成像系统已被广泛研究用于三维(3D)可视化和识别刚性物体。相反,生物样本具有动态活动,例如移动,分裂和生长。因此,这些问题使得很难对生物样本进行三维可视化。而且,许多标本,例如原生动物,细菌和精子尾巴中的细胞部分,除非被染色,否则基本上是完全透明的,从而杀死标本。因此,将它们的基于图像强度的2D轮廓用于它们的可视化或识别是不够的。已经开发出相衬技术用于透明标本的非侵入性可视化,因为透明标本中密度和组成的差异会导致通过它们的光的相位发生变化。本文提出了一种用于微/纳米生物的3D传感,成像和识别的新方法。提出的数字全息系统可提供标本的实时3D记录和可视化。统计模式识别算法被开发用于样本的最佳分类。该方法旨在识别从标本的数字全息图重建的3D图像,并识别出厚度,尺寸和形状的微小差异。这种方法发展为具有简单,实用的光学设置的在线白光(WLI)数字全息系统。提出的WLI数字全息系统的主要优点是它可以分析整个光谱中的样本,并且需要非常简单,实用的光学设置来进行3D记录。另外,可以通过使用较短或适用的波长来获得最佳空间分辨率。相信本文所讨论的方法和算法是自动识别透明生物样本的重要进展。据作者所知,这是有关使用3D全息成像数据对微/纳米生物进行光电识别的第一份报告。

著录项

  • 作者

    Moon, Inkyu.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号