首页> 外文学位 >Doping and photoluminescence of poly(phenylene vinylene)s and polythiophenes in electrochemical devices and sensors.
【24h】

Doping and photoluminescence of poly(phenylene vinylene)s and polythiophenes in electrochemical devices and sensors.

机译:电化学装置和传感器中的聚苯撑亚乙烯基和聚噻吩的掺杂和光致发光。

获取原文
获取原文并翻译 | 示例

摘要

With the discovery of conduction in conjugated polymer polyacetylene, emerged a class of materials with vast applicative potential, and scientific descriptions integrating the theories of semiconductor physics and organic chemistry disciplines. The additional discovery of electroluminescence in poly(para phyenylene vinylene) (PPV) furthered the possibilities of these amorphous plastics in the design of organic optoelectronic devices. Though decades of re search have fueled the use of conjugated polymers in applications such as light-emitting diodes (PLED), light-emitting electrochemical cells (LEC), actuators, electrochromic devices (ECD), transistors, solar cells and sensors, fundamental mechanisms concerning the optical and electrical nature of the materials are still uncertain.; In this thesis, I present several studies designed to elucidate relationships between the doping and optical properties of conjugated polymers as they used in electrochemical devices and sensors. In Chapter one, I provide an introduction to the semiconducting and optical traits of organic polymers, specifically PPVs and polythiophenes, as well as an introduction to surface enhanced optical phenomena. In Chapter two, I elaborate on the experimental processes and models used throughout.; Doping introduces structural changes in polymer chains, altering their physical and optical properties. Electrochemical doping of conjugated polymers, significant to the operation of devices such as LECs and polymer actuators, is not fully understood. In Chapter three, I use cyclic voltammetry as a technique for understanding electrochemical doping in poly[2 methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and interpret the results in terms of the formation of fundamental quasi-particles that are interrelated to changes in the absorption and photoluminescence of the material. An ECD is a simple alternative device structures to the LEC for studying solid-state p- and n-type doping. In Chapter four I describe the operation of a solid-state ECD made from MEH-PPV and characterize its behavior with changes in dopant concentration, dopant type, and film thickness.; Chemical and electrochemical doping in electroactive polymers cause changes in the absorption profile and drastically reduce the luminescence efficiency; consequently, because of growing demand for low-cost, sensitive, processable materials for chemical and biological sensing, the luminescence sensitivity of conjugated polymers to molecular quenching is an attractive characteristic. In Chapter five, I present the design of a chemically robust platform for examining chemical doping in polythiophenes. I report the photoluminescence sensitivity, and consequently the induced conductivity, of grafted polythiophenes when exposed to oxidants iodine, ferric chloride and methyl viologen.; Furthermore, the ability to enhance the luminescence quantum efficiency of a conjugated polymer without chemically modifying the structure would benefit all light-emitting, photovoltaic and optically-based sensing applications. In exploration of this concept, Chapter six describes currently unexplored, experiments on surface enhanced photoluminescence in MEH-PPV films using thermally evaporated silver nanoislands. In these, I find enhancement possible but more complicated than similar processes on small molecule dyes as a result of highly efficient luminescence quenching and thin film interference. I analyze the complications and propose studies to further probe the mechanisms involved.
机译:随着共轭聚合物聚乙炔中导电性的发现,出现了一类具有巨大应用潜力的材料,并结合了半导体物理学和有机化学学科的科学描述。在聚对苯二甲撑亚乙烯基(PPV)中发现电致发光的其他发现进一步增加了这些无定形塑料在有机光电器件设计中的可能性。尽管数十年来的研究推动了共轭聚合物在诸如发光二极管(PLED),发光电化学电池(LEC),致动器,电致变色器件(ECD),晶体管,太阳能电池和传感器,基本机制等应用中的使用关于材料的光学和电气性质仍不确定。在这篇论文中,我提出了一些旨在阐明共轭聚合物在电化学装置和传感器中的掺杂与光学性质之间关系的研究。在第一章中,我将介绍有机聚合物的半导体和光学特性,特别是PPV和聚噻吩,并介绍表面增强的光学现象。在第二章中,我详细介绍了整个实验过程和模型。掺杂会导致聚合物链结构发生变化,从而改变其物理和光学性质。对于诸如LEC和聚合物致动器之类的设备的操作而言,共轭聚合物的电化学掺杂尚不充分。在第三章中,我将循环伏安法作为一种技术来理解聚[2甲氧基-5-(2'-乙基己氧基)-对亚苯基亚乙烯基](MEH-PPV)中的电化学掺杂,并根据形成的结果解释了结果。与材料的吸收和光致发光变化相关的基本准粒子。 ECD是LEC的一种简单的替代器件结构,用于研究固态p型和n型掺杂。在第四章中,我描述了由MEH-PPV制成的固态ECD的操作,并通过掺杂剂浓度,掺杂剂类型和膜厚度的变化来表征其行为。电活性聚合物中的化学和电化学掺杂会导致吸收曲线发生变化,并大大降低发光效率。因此,由于对用于化学和生物传感的低成本,敏感,可加工材料的需求不断增长,因此,共轭聚合物对分子猝灭的发光敏感性是有吸引力的特性。在第五章中,我介绍了一个化学健壮的平台的设计,用于检查聚噻吩中的化学掺杂。我报道了当暴露于氧化剂碘,氯化铁和甲基紫精时,接枝聚噻吩的光致发光敏感性,以及由此引起的电导率。此外,在不化学改变结构的情况下增强共轭聚合物的发光量子效率的能力将有益于所有基于发光,光电和光学的传感应用。在探讨这一概念时,第六章介绍了目前尚未探索的使用热蒸发银纳米岛在MEH-PPV膜中进行表面增强光致发光的实验。在这些方法中,由于高效的荧光猝灭和薄膜干涉,我发现增强小分子染料的方法是可行的,但比类似方法复杂。我分析了并发症,并提出研究以进一步探讨所涉及的机制。

著录项

  • 作者

    Holt, Amanda Lynn.;

  • 作者单位

    University of California, Santa Cruz.;

  • 授予单位 University of California, Santa Cruz.;
  • 学科 Chemistry Polymer.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号