首页> 外文学位 >Hybrid modeling and robustness analysis of cell cycle regulation.
【24h】

Hybrid modeling and robustness analysis of cell cycle regulation.

机译:细胞周期调控的混合建模和鲁棒性分析。

获取原文
获取原文并翻译 | 示例

摘要

Caulobacter crescentus is a model organism for studying asymmetrical bacteria cell cycle division. During the cell cycle, a Caulobacter cell needs to accomplish molecular functions in the right sequence: It sheds its flagella, grows a stalk, replicates and segregates its chromosomes, and initiates cytokinesis to compartmentalize the two morphologically distinct daughter cells, all of which are coordinated by a genetic control circuit comprised of cascaded regulatory proteins that are expressed in an orderly and timely fashion to drive the cell cycle progression. Non-genetic mechanisms like methylation-based promoter control, phospho-signal pathways and regulated proteolysis couple the cyclic genetic circuit back to the progression of various cell cycle processes, closing the feedback control loops. With advances in experimental technology, the understanding of this cellular regulatory system has progressed to a level of complexity which is difficult for intuitive understanding, especially when dynamic behaviors resulting from feedback effects are concerned.;To simulate the dynamic properties of the cell cycle feedback control, an in silico hybrid simulation model was constructed based on the concept of hybrid system from control theory. Mimicking the Caulobacter control structure in vivo, the hybrid model uses continuous ordinary differential equations (ODE) to model well-understood molecular reactions such as protein synthesis, but uses discrete event-driven finite state machines (FSM) to phenomenologically model complex cell processes and instantaneous reactions. This model provides a flexible and extensible architecture capable of handling different levels of abstraction and mechanistic details. The model was validated by the demonstrative consistency between simulation results and experimental measurements including protein and mRNA concentration profiles. In addition, in silico mutants based on the model correctly predicted phenotypes of various in vivo mutants.;Because biological systems have to survive under a variety of environmental, genetic, and stochastic perturbations, it has been postulated that their regulatory systems have to be quite robust, so a further analysis of the robustness property of the modeled cell cycle regulation can provide new biological insights. It is difficult to use traditional methods like parameter sensitivity analysis to fully explore the design space and intuitively interpret the result in terms of the robustness of a complex model. By creating an equivalent asynchronous digital circuit representation of the cell cycle model, which maintains properties of interest, formal model checking techniques were applied to exhaustively searching the entire state space to identify the potential scenarios which causes the cell cycle to fail to complete. The analysis revealed that the top level control of the Caulobacter cell cycle regulation is extremely robust with very few cases of potential failures. Furthermore, non-genetic mechanisms such as methylation-based control of promoter activation and its remaining basal expression have been shown to play an important role for robustness under special circumstances. Model checking also verified that the modeled cell cycle is able to robustly switch into growth arrest when facing stress or starvation.
机译:新月形杆菌是研究不对称细菌细胞周期分裂的模型生物。在细胞周期中,Caulobacter细胞需要按正确的顺序完成分子功能:它脱落鞭毛,生长茎,复制和分离其染色体,并启动胞质分裂作用以分隔两个形态不同的子细胞,所有这些子细胞都被协调通过由级联调节蛋白组成的基因控制电路,该蛋白以有序和及时的方式表达,以驱动细胞周期进程。诸如基于甲基化的启动子控制,磷酸信号途径和调节的蛋白水解之类的非遗传机制将循环遗传回路耦合回各种细胞周期过程的进程,从而封闭了反馈控制回路。随着实验技术的进步,对该细胞调节系统的理解已发展到难以直观理解的复杂程度,尤其是当考虑到由反馈效应引起的动态行为时。在控制理论的基础上,基于混合系统的概念,建立了计算机混合仿真模型。模仿体内的杆状细菌控制结构,该混合模型使用连续常微分方程(ODE)来建模易于理解的分子反应,例如蛋白质合成,但使用离散事件驱动的有限状态机(FSM)来对复杂的细胞过程进行现象学建模和瞬时反应。该模型提供了一种灵活且可扩展的体系结构,能够处理不同级别的抽象和机制细节。通过仿真结果与实验测量值(包括蛋白质和mRNA浓度曲线)之间的证明一致性验证了该模型。此外,基于该模型的计算机突变体可以正确预测各种体内突变体的表型。由于生物系统必须在各种环境,遗传和随机扰动下生存,因此假设它们的调控系统必须非常精确。健壮性,因此对建模细胞周期调控的健壮性特性的进一步分析可以提供新的生物学见解。很难使用诸如参数敏感性分析之类的传统方法来充分探索设计空间并就复杂模型的健壮性直观地解释结果。通过创建单元周期模型的等效异步数字电路表示形式(保持感兴趣的属性),正式的模型检查技术被应用于穷举搜索整个状态空间以识别可能导致单元周期无法完成的情况。分析显示,对梭菌细菌细胞周期调控的最高控制非常强大,几乎没有潜在的失败案例。此外,已显示非遗传机制,例如基于甲基化的启动子激活及其剩余基础表达的控制,在特殊情况下对于鲁棒性起着重要作用。模型检查还证实,当面临压力或饥饿时,建模的细胞周期能够稳固地转变为生长停滞。

著录项

  • 作者

    Shen, Xiling.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Biology Molecular.;Biology Bioinformatics.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号