首页> 外文学位 >Electrically Controlled Liquid Metal Antennas and Periodic Structures
【24h】

Electrically Controlled Liquid Metal Antennas and Periodic Structures

机译:电控液态金属天线和周期结构

获取原文
获取原文并翻译 | 示例

摘要

Reconfigurable antennas and periodic structures with frequency, polarization, or pattern agility, are multi-functional and adaptable to changing demands in wireless communications. As such they are actively researched by antenna engineers. Well-established reconfiguration techniques, such as electrical switching, structural and material change, are used to reconfigure the current distribution on the antenna structures to deliver dynamic characteristics. However, these techniques only achieve a limited number of reconfiguration states and suffer from inherent restrictions. Liquid metal (LM), particularly non-toxic alloy of gallium and indium, is a promising conductor capable of delivering a larger number of tunable states than conventional reconfigurable techniques. In most pre-existing applications, a pneumatic control dominates the actuation of LM but requires a bulky micro-pump. In this dissertation, a novel electrochemical control of the LM changes the interfacial tension of LM by removing and passivating the surface oxide skin using only electric potential. For the first time, we address the research gap by implementing the electrochemically controlled LM system into the design of reconfigurable structures.;Using this method, we first study a capillarity tuning of LM in a single direction. Tuning of the LM in capillaries can be switched on and off by only adjusting the applied potential. A reconfigurable monopole antenna using electrochemically controlled LM possesses a larger frequency tuning range and higher linearity level compared to tunable antennas using common reconfiguration techniques. The electrical actuation of LM provides a chance for autonomously tuning LM to the desired state based on a feedback control, as demonstrated in the programmable frequency control of the LM antenna developed in this dissertation. This electrical control further facilitates the integration of the LM system into a reconfigurable system without resorting to the bulky micro-bump of a pneumatic control system.;We then discuss the tradeoff associated with this novel actuation mechanism of LM, specifically the tuning speed of LM, power consumption and antenna efficiency associated with electrolyte concentration, and biasing condition. Briefly, a less concentrated electrolyte generates a fewer loss to the antenna but requires a larger biasing power to actuate the same speed with a more concentrated electrolyte. Understanding this tradeoff is integral to selecting a biasing current and electrolyte when implementing an LM system into a practical antenna system. The limitations and practical issues that arise from using electrolytes and packaging liquids are also discussed.;Finally, the single capillarity tuning of LM is developed into a multi-directional control in multi-capillaries and on open surfaces, capable of independently tuning the LM surface tension in different directions with independent biasing voltages. The multi-directional control of LM creates more flexible structure topologies that are harder to achieve through a pneumatic actuation of LM. A crossed dipole with compound frequency and polarization agility is demonstrated for multi-directional capillarity tuning of LM. The circular and linear polarization tunability is predicted from a high pass circuit model, thereby reducing the simulation efforts. Then, we apply the electrically controlled LM on 2D to a periodic structure- HIS on open surfaces. The LM is used as the conductor of a circular patch element and a split ring resonator element. Electrically tuning the LM surface tension expands or retracts the LM into a larger and smaller area. Simulation results suggest that a shifting reflection phase curve should be attained with this model, however, tunability is lost after adding the electrolyte into the elements. The likely explanation for this failure is detailed. The broad range of future directions and limitations of the electrically controlled LM are discussed at the end of this dissertation.
机译:具有频率,极化或方向图敏捷性的可重构天线和周期性结构具有多功能性,可适应不断变化的无线通信需求。因此,天线工程师对它们进行了积极的研究。众所周知的重新配置技术,例如电开关,结构和材料更改,用于重新配置天线结构上的电流分布,以传递动态特性。但是,这些技术仅实现有限数量的重新配置状态,并且受到固有限制。液态金属(LM),特别是无毒的镓和铟合金,是一种有前途的导体,与传统的可重构技术相比,它能够提供更多的可调谐状态。在大多数现有应用中,气动控制主导着LM的致动,但需要庞大的微型泵。本文通过对LM的电化学控制,通过仅利用电势去除和钝化表面氧化皮,改变了LM的界面张力。首次,我们通过将电化学控制的LM系统应用于可重构结构的设计中,解决了研究空白。使用这种方法,我们首先研究了LM在单个方向上的毛细调整。仅通过调节施加的电势就可以打开和关闭毛细管中的LM调谐。与使用常规重新配置技术的可调谐天线相比,使用电化学控制的LM的可重新配置单极天线具有更大的频率调谐范围和更高的线性度。 LM的电驱动为基于反馈控制将LM自动调谐到所需状态提供了机会,如本文开发的LM天线的可编程频率控制所示。这种电气控制进一步促进了LM系统集成到可重新配置的系统中,而无需借助气动控制系统的庞大微型凸起。 ,与电解质浓度有关的功耗和天线效率以及偏置条件。简而言之,较低浓度的电解质对天线产生的损耗较小,但需要较大的偏置功率才能用较高浓度的电解质驱动相同的速度。当在实际天线系统中实施LM系统时,了解这种权衡对于选择偏置电流和电解质是必不可少的。最后,还讨论了由于使用电解液和包装液体而引起的局限性和实际问题。最后,LM的单毛细管微调已发展为在多毛细管和开放表面上的多方向控制,能够独立地调节LM表面具有独立偏置电压的不同方向的张力。 LM的多方向控制可创建更灵活的结构拓扑,而通过LM的气动驱动很难实现这种拓扑。演示了具有复合频率和极化敏捷性的交叉偶极子,用于LM的多方向毛细调整。根据高通电路模型预测圆形和线性极化的可调谐性,从而减少了仿真工作。然后,我们将2D电控LM应用于开放表面上的周期性结构HIS。 LM用作圆形贴片元件和开口环谐振器元件的导体。通过电动调节LM表面张力,可将LM扩展或缩进更大或更小的区域。仿真结果表明,该模型应获得一条偏移的反射相位曲线,但是,在将电解质添加到元素中后,可调性会丢失。详细介绍了此失败的可能原因。本文最后讨论了电控LM的未来发展方向和局限性。

著录项

  • 作者

    Wang, Meng.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号