首页> 外文学位 >Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources
【24h】

Dynamic Control of Facts Devices to Enable Large Scale Penetration of Renewable Energy Resources

机译:动态控制事实设备,实现可再生能源的大规模渗透

获取原文
获取原文并翻译 | 示例

摘要

This thesis focuses on some of the problems caused by large scale penetration of Renewable Energy Resources within EHV transmission networks, and investigates some approaches in resolving these problems. In chapter 4, a reduced-order model of the 500 kV WECC transmission system is developed by estimating its key parameters from phasor measurement unit (PMU) data. The model was then implemented in RTDS and was investigated for its accuracy with respect to the PMU data. Finally it was tested for observing the effects of various contingencies like transmission line loss, generation loss and large scale penetration of wind farms on EHV transmission systems.;Chapter 5 introduces Static Series Synchronous Compensators (SSSC) which are seriesconnected converters that can control real power flow along a transmission line. A new application of SSSCs in mitigating Ferranti effect on unloaded transmission lines was demonstrated on PSCAD. A new control scheme for SSSCs based on the Cascaded H-bridge (CHB) converter configuration was proposed and was demonstrated using PSCAD and RTDS. A new centralized controller was developed for the distributed SSSCs based on some of the concepts used in the CHB-based SSSC. The controller's efficacy was demonstrated using RTDS.;Finally chapter 6 introduces the problem of power oscillations induced by renewable sources in a transmission network. A power oscillation damping (POD) controller is designed using distributed SSSCs in NYPA's 345 kV three-bus AC system and its efficacy is demonstrated in PSCAD. A similar POD controller is then designed for the CHB-based SSSC in the IEEE 14 bus system in PSCAD. Both controllers were noted to have significantly damped power oscillations in the transmission networks.
机译:本文着重研究了可再生能源在超高压输电网络中的大规模渗透所引起的一些问题,并探讨了解决这些问题的一些方法。在第4章中,通过根据相量测量单元(PMU)数据估算其关键参数,开发了500 kV WECC传输系统的降阶模型。该模型随后在RTDS中实现,并针对PMU数据对其准确性进行了研究。最后进行了测试,以观察各种意外情况的影响,例如输电线路损耗,发电损耗和风电场对超高压输电系统的大规模渗透。;第5章介绍了静态串联同步补偿器(SSSC),它们是可以控制有功功率的串联转换器。沿着传输线流动。在PSCAD上演示了SSSC在减轻Ferranti对空载输电线路影响方面的新应用。提出了一种基于级联H桥(CHB)转换器配置的SSSC的新控制方案,并使用PSCAD和RTDS进行了演示。基于基于CHB的SSSC中使用的一些概念,为分布式SSSC开发了一种新的集中式控制器。使用RTDS证明了控制器的有效性。最后,第6章介绍了传输网络中可再生资源引起的功率振荡问题。在NYPA的345 kV三母线交流系统中,使用分布式SSSC设计了功率振荡阻尼(POD)控制器,并在PSCAD中证明了其有效性。然后,为PSCAD的IEEE 14总线系统中的基于CHB的SSSC设计了类似的POD控制器。注意到这两个控制器在传输网络中均具有显着衰减的功率振荡。

著录项

  • 作者

    Chavan, Govind Sahadeo.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Electrical engineering.;Alternative Energy.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号