首页> 外文学位 >Design and simulation of multifunctional optical devices using metasurfaces
【24h】

Design and simulation of multifunctional optical devices using metasurfaces

机译:使用超表面的多功能光学设备的设计和仿真

获取原文
获取原文并翻译 | 示例

摘要

In classical optics, optical components such as lenses and microscopes are unable to focus the light into deep subwavelength or nanometer scales due to the diffraction limit. However, recent developments in nanophotonics, have enabled researchers to control the light at subwavelength scales and overcome the diffraction limit. Using subwavelength structures, we can create a new class of optical materials with unusual optical responses or with new properties that are not attainable in nature. Such artificial materials can be created by structuring conventional materials on the subwavelength scale, giving rise to the unusual optical properties due to the electric and magnetic responses of each meta-atom. These materials are called metamaterials or engineered materials that exhibit exciting phenomena such as non-linear optical responses and negative refraction. Metasurfaces are two dimensional meta-atoms arranged as an array with subwavelength distances. Therefore, metasurfaces are planar, ultrathin version of metamaterials that offer fascinating possibilities of manipulating the wavefront of the optical fields.;Recently, the control of light properties such as phase, amplitude, and polarization has been demonstrated by introducing abrupt phase change across a subwavelength scale. Phase discontinuities at the interface can be attained by engineered metasurfaces with new applications and functionalities that have not been realized with bulk or multilayer materials. In this work, high efficient, planar metasurfaces based on geometric phase are designed to realize various functionalities. The designs include metalenses, axicon lenses, vortex beam generators, and Bessel vortex beam generators. The capability of planar metasurfaces in focusing the incident beams and shaping the optical wavefront is numerically demonstrated. COMSOL simulations are used to prove the capability of these metasurfaces to transform the incident beams into complex beams that carry orbital angular momentum (OAM). New designs of ultrathin, planar metasurfaces may result in development of a new type of photonic devices with reduced loss and broad bandwidth. The advances in metasurface designs will lead to ultrathin devices with surprising functionalities and low cost. These novel designs may offer more possibilities for applications in quantum optic devices, pulse shaping, spatial light modulators, nano-scale sensing or imaging, and so on.
机译:在经典光学中,由于衍射极限,诸如透镜和显微镜之类的光学组件无法将光聚焦到深亚波长或纳米级。但是,纳米光子学的最新发展使研究人员能够将光控制在亚波长范围内,并克服了衍射极限。使用亚波长结构,我们可以创建具有异常光学响应或自然无法获得的新特性的新型光学材料。可以通过在亚波长范围内构造常规材料来创建此类人造材料,由于每个亚原子的电和磁响应而导致异常的光学特性。这些材料称为超材料或工程材料,它们表现出令人兴奋的现象,例如非线性光学响应和负折射。超表面是二维亚原子,排列成具有亚波长距离的阵列。因此,超颖表面是超材料的平面超薄形式,提供了操纵光场波前的引人入胜的可能性。最近,通过在整个亚波长范围内引入突然的相变,证明了对光属性(如相位,幅度和偏振)的控制规模。界面的相间不连续性可以通过工程化的超颖表面来实现,这些表面具有新的应用程序和功能,而这些功能和功能是大块或多层材料无法实现的。在这项工作中,设计了基于几何相位的高效平面超表面,以实现各种功能。这些设计包括Metalenses,轴锥透镜,涡旋光束发生器和Bessel涡旋光束发生器。数值证明了平面超表面聚焦入射光束和整形光波前的能力。 COMSOL仿真用于证明这些超表面将入射光束转换为携带轨道角动量(OAM)的复杂光束的能力。超薄的平面超表面的新设计可能会导致新型光子器件的开发,该器件具有更低的损耗和更宽的带宽。超表面设计的进步将导致超薄设备具有令人惊讶的功能和低成本。这些新颖的设计可能为量子光学设备,脉冲整形,空间光调制器,纳米级传感或成像等应用提供更多可能性。

著录项

  • 作者

    Alyammahi, Saleimah.;

  • 作者单位

    University of Dayton.;

  • 授予单位 University of Dayton.;
  • 学科 Design.;Materials science.;Engineering.;Optics.
  • 学位 Dr.Ph.
  • 年度 2017
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人类学;
  • 关键词

  • 入库时间 2022-08-17 11:39:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号