首页> 外文学位 >Anthrax lethal toxin (LT) induces the formation of a membrane-associated inflammasome complex in murine macrophages.
【24h】

Anthrax lethal toxin (LT) induces the formation of a membrane-associated inflammasome complex in murine macrophages.

机译:炭疽致死毒素(LT)诱导了小鼠巨噬细胞中膜相关的炎性体复合物的形成。

获取原文
获取原文并翻译 | 示例

摘要

Bacillus anthracis is the etiological agent of anthrax disease. The life cycle of this endospore-forming bacterium fluctuates between metabolically inactive sporulation phase and metabolically active vegetative phase. The sporulation phase is characterized by the high resistance of endospores to very harsh conditions. These endospores are taken up by the host where they germinate into the vegetative form of the bacterium, an essential step to mount a systemic infection. Germination of the anthrax bacterium requires binding of specific germinants to specific germination receptors present on the surface of the endospores. While germinants that trigger germination of B. anthracis endospores within the infected host remain to be identified, powerful germinants have been identified that trigger germination of endospores in cell-free systems. For example, it has been shown that a combination of specific nucleosides and amino acids, i.e. inosine and alanine, efficiently germinate B. anthracis spores in vitro. We screened nucleoside analogues and identified the inosine analog 6-thioguanosine (6-TG) that efficiently blocked in vitro germination of B. anthracis spores. We further demonstrated that 6-thioguanosine also prevented macrophage killing mediated by B. anthracis spores. As germination is the initial step required for a systemic infection, the inosine analog has therefore therapeutic potential as an early intervention agent.;After germination inside the host phagocytic vacuoles, Bacillus anthracis produces a number of virulence factors that enables the bacterium to establish a systemic infection resulting in disease progression of the infected host. Anthrax lethal toxin (LT) is the main virulence factor of B. anthracis linked to morbidity and mortality of systemic anthrax. In fact, rodents injected with LT develop similar disease symptoms as those infected with B. anthracis spores. The mechanism of how LT triggers disease is still unclear. However, it has been shown that LT kills specific target in a strain-dependent fashion. The LT susceptibility of murine cells is controlled by nucleotide oligomerization domain (NOD)-like receptors (NLRs). Mice expressing a specific allele of the NLR protein Nalp1b are highly susceptible to LT killing. In recent years it has been shown that multiple microbial pathogens activate specific NLRs resulting in caspase-1 activation. In fact, LT killing of susceptible macrophages is caspase-1-dependent. However, it is unclear how activation of NLRs results in cell death and disease progression by microbial pathogens. Several NLRs have been described to form high-molecular complexes, a so-called inflammasome complex, following stimulation by microbial components. In order to analyze processes triggered by LT, we tested whether the anthrax toxin also stimulated the formation of an inflammasome complex. In this study, we combined biochemical and cell biology tools to identify the molecular size, proteins composition, and subcellular localization of a putative inflammasome complex in LT-treated macrophages. We found that in unstimulated murine macrophages, caspase-1 is part of a ∼200 kDa complex and Nalp1b part of a of a high-molecular (∼800 kDa) complex. We demonstrated that LT treatment of these cells resulted in caspase-1 recruitment to the high-molecular (Nalp1b)-containing complex, concurrent with processing of cytosolic caspase-1 substrate IL-18. Using subcellular fractionation techniques we further demonstrated that Nalp1b and caspase-1 are membrane associated. Intriguingly, both caspase-1 and Nalp1b were membrane-associated, while the caspase-1 substrate interleukin-18 was cytosolic. Consistent with formation of an inflammasome complex, we showed that Nalp1b and caspase-1 are able to directly interact with each other. Caspase-1-associated inflammasome components included, besides Nalp1b, the pro-inflammatory caspase-11 and the caspase-1 substrate, alpha-enolase. Taken together, our findings suggest that LT triggers the formation of a membrane-associated inflammasome complex in murine macrophages resulting in cleavage of cytosolic caspase-1 substrates and cell death. Moreover, we optimized the conditions for reconstituting the minimal required components for Nalp1b inflammasome formation, procaspase-1 and Nalp1b, in 293T cells. We found that Anthrax lethal toxin is not interacting directly with Nalp1b and did not alone enhance the reconstituting inflammasome complex formation in 293T cells. Therefore, we assume that LT induces an inflammasome complex via cleavage of a macrophage protein acting as an endogenous dangerous signal in the susceptible murine macrophages.
机译:炭疽杆菌是炭疽病的病原体。该内生孢子形成细菌的生命周期在代谢失活的孢子形成阶段和代谢活跃的营养阶段之间波动。孢子形成阶段的特征是内生孢子对非常苛刻条件的高度抵抗力。这些内生孢子被宿主吸收,并在其中发芽成细菌的营养形式,这是引发全身感染的重要步骤。炭疽杆菌细菌的萌发需要特定的发芽剂与内生孢子表面上存在的特定的萌发受体结合。尽管引发感染宿主内炭疽芽孢杆菌内生芽萌发的发芽剂仍有待确定,但已经鉴定出了在无细胞系统中引发内生芽孢萌发的强力发芽剂。例如,已经表明,特定核苷和氨基酸的组合,即肌苷和丙氨酸,在体外能有效地使炭疽芽孢杆菌的孢子萌发。我们筛选了核苷类似物,并确定了肌苷类似物6-硫鸟嘌呤(6-TG),可以有效地阻断炭疽芽孢杆菌孢子的体外萌发。我们进一步证明了6-硫代鸟苷还可以防止炭疽芽孢杆菌孢子介导的巨噬细胞杀伤。由于发芽是全身感染的第一步,因此肌苷类似物具有作为早期干预剂的治疗潜能。在宿主吞噬液泡内发芽后,炭疽芽孢杆菌会产生多种毒力因子,使细菌能够建立全身性感染导致感染宿主的疾病进展。炭疽致死性毒素(LT)是炭疽杆菌的主要毒力因子,与全身性炭疽的发病率和死亡率有关。实际上,注射了LT的啮齿动物会产生与感染炭疽芽孢杆菌孢子相似的疾病症状。 LT如何引发疾病的机制仍不清楚。然而,已经显示LT以菌株依赖性方式杀死特定靶标。鼠细胞的LT敏感性受核苷酸寡聚化域(NOD)样受体(NLR)的控制。表达NLR蛋白Nalp1b特定等位基因的小鼠对LT杀伤高度敏感。近年来,已显示多种微生物病原体激活特定的NLR,导致caspase-1激活。实际上,LT对易感巨噬细胞的杀伤是caspase-1依赖性的。但是,尚不清楚NLR的激活如何导致微生物病原体导致细胞死亡和疾病进展。已经描述了几种NLR在被微生物组分刺激后形成高分子复合物,即所谓的炎性体复合物。为了分析由LT引发的过程,我们测试了炭疽毒素是否也刺激了炎性体复合物的形成。在这项研究中,我们结合了生化和细胞生物学工具,以鉴定LT治疗的巨噬细胞中假定的炎性体复合物的分子大小,蛋白质组成和亚细胞定位。我们发现,在不受刺激的鼠巨噬细胞中,caspase-1是〜200 kDa复合物的一部分,而Nalp1b是高分子(〜800 kDa)复合物的一部分。我们证明了这些细胞的LT治疗导致caspase-1募集到含有高分子(Nalp1b)的复合物,同时处理了胞浆caspase-1底物IL-18。使用亚细胞分级分离技术,我们进一步证明了Nalp1b和caspase-1与膜相关。有趣的是,caspase-1和Nalp1b都与膜相关,而caspase-1底物白介素18是胞质的。与炎症小体复合物的形成一致,我们表明Nalp1b和caspase-1能够直接彼此相互作用。 Caspase-1相关的炎性体成分除了Nalp1b外,还包括促炎性caspase-11和caspase-1底物α-烯醇酶。两者合计,我们的发现表明LT触发在小鼠巨噬细胞中膜相关的炎性体复合物的形成,从而导致胞浆caspase-1底物的裂解和细胞死亡。此外,我们优化了在293T细胞中重组Nalp1b炎性小体形成,procaspase-1和Nalp1b所需的最少成分的条件。我们发现炭疽致死毒素并不直接与Nalp1b相互作用,并且没有单独增强293T细胞中重构的炎症小体复合物的形成。因此,我们假设LT通过巨噬细胞蛋白的裂解诱导炎症小体复合物,而巨噬细胞蛋白则是易感鼠巨噬细胞中的内源性危险信号。

著录项

  • 作者

    Nour, Adel M.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Biology Microbiology.;Health Sciences Immunology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;预防医学、卫生学;
  • 关键词

  • 入库时间 2022-08-17 11:39:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号