首页> 外文学位 >Exploring RNA and protein three-dimensional structures by geometric algorithms .
【24h】

Exploring RNA and protein three-dimensional structures by geometric algorithms .

机译:用几何算法探索RNA和蛋白质的三维结构。

获取原文
获取原文并翻译 | 示例

摘要

Many problems in RNA and protein structures are related with their specific geometric properties. Geometric algorithms can be used to explore the possible solutions of these problems. This dissertation investigates the geometric properties of RNA and protein structures and explores three different ways that geometric algorithms can help to the study of the structures.;Determine accurate structures. Accurate details in RNA structures are important for understanding RNA function, but the backbone conformation is difficult to determine and most existing RNA structures show serious steric clashes (≥ 0.4 A overlap). I developed a program called RNABC (RNA Backbone Correction) that searches for alternative clash-free conformations with acceptable geometry. It rebuilds a suite (unit from sugar to sugar) by anchoring phosphorus and base positions, which are clearest in crystallographic electron density, and reconstructing other atoms using forward kinematics and conjugate gradient methods. Two tests show that RNABC improves backbone conformations for most problem suites in S-motifs and for many of the worst problem suites identified by members of the Richardson lab.;Display structure commonalities. Structure alignment commonly uses root mean squared distance (RMSD) to measure the structural similarity. I first extend RMSD to weighted RMSD (wRMSD) for multiple structures and show that using wRMSD with multiplicative weights implies the average is a consensus structure. Although I show that finding the optimal translations and rotations for minimizing wRMSD cannot be decoupled for multiple structures, I develop a near-linear iterative algorithm to converge to a local minimum of wRMSD. Finally I propose a heuristic algorithm to iteratively reassign weights to reduce the effect of outliers and find well-aligned positions that determine structurally conserved regions.;Distinguish local structural features. Identifying common motifs (fragments of structures common to a group of molecules) is one way to further our understanding of the structure and function of molecules. I apply a graph database mining technique to identify RNA tertiary motifs. I abstract RNA molecules as labeled graphs, use a frequent subgraph mining algorithm to derive tertiary motifs, and present an iterative structure alignment algorithm to classify tertiary motifs and generate consensus motifs. Tests on ribosomal and transfer RNA families show that this method can identify most known RNA tertiary motifs in these families and suggest candidates for novel tertiary motifs.
机译:RNA和蛋白质结构中的许多问题与其特定的几何特性有关。几何算法可用于探索这些问题的可能解决方案。本文研究了RNA和蛋白质结构的几何特性,探索了几何算法可以帮助研究结构的三种不同方式。确定精确的结构。 RNA结构的准确细节对于理解RNA功能很重要,但是骨架构象很难确定,大多数现有的RNA结构都显示出严重的空间冲突(≥0.4 A重叠)。我开发了一个名为RNABC(RNA骨干校正)的程序,该程序搜索具有可接受几何形状的其他无冲突构象。它通过锚固晶体学电子密度中最清晰的磷和碱基位置,并使用正向运动学和共轭梯度法重建其他原子,从而重建了一个套件(从糖到糖的单位)。两项测试表明,RNABC改善了S-motif中大多数问题套件以及Richardson实验室成员确定的许多最坏问题套件的主干构象。显示结构的共性。结构对齐通常使用均方根距离(RMSD)来衡量结构相似性。我首先将RMSD扩展为多种结构的加权RMSD(wRMSD),并表明将wRMSD与乘性权重结合使用意味着平均值是一种共识结构。尽管我表明对于多个结构,找到最小化wRMSD的最佳平移和旋转无法解耦,但我开发了一种近乎线性的迭代算法以收敛到wRMSD的局部最小值。最后,我提出了一种启发式算法来迭代地重新分配权重,以减少异常值的影响并找到确定结构上保守区域的对齐位置。区分局部结构特征。识别常见的基序(一组分子共有的结构片段)是进一步了解分子的结构和功能的一种方法。我应用了一种图形数据库挖掘技术来识别RNA三级基序。我将RNA分子抽象为标记图,使用频繁的子图挖掘算法来推导三级基序,并提出了一种迭代结构比对算法来对三级基序进行分类并生成共有基元。对核糖体和转移RNA家族的测试表明,这种方法可以识别这些家族中最知名的RNA三次基序,并为新的三次基序提供候选方法。

著录项

  • 作者

    Wang, Xueyi.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号