首页> 外文学位 >Transfer of mass and heat in polymer electrolyte membrane fuel cell cathode.
【24h】

Transfer of mass and heat in polymer electrolyte membrane fuel cell cathode.

机译:聚合物电解质膜燃料电池阴极中的质量和热量传递。

获取原文
获取原文并翻译 | 示例

摘要

The need for alternative sources of energy with low to zero emissions has led to the development of polymer electrolyte membrane fuel cells. PEM fuel cells are electro-chemical devices that convert chemical energy to electricity by using hydrogen as the fuel and oxygen as the oxidant with water as the byproduct of this reaction. One of the major barriers to the commercialization of these cells is the losses that occur at the cathode due to the slow oxygen diffusion and sluggish electrochemical reaction, which are further amplified by the presence of liquid water. Numerous numerical and mathematical models are found in the literature, which investigate the transport phenomena in the cathode and their effects on the cell performance.; In this thesis, the discussion of a two-dimensional, steady state, half cell model is put forward. The conservation equations for mass, momentum, species charge and energy are solved using the commercial software COMSOL Multiphysics. The conservation equations are applied to the cathode bipolar plate, gas diffusion layer and catalyst layer. The flow of gaseous species are assumed to be uniform in the channel. The catalyst layer is assumed to be composed of a uniform distribution of catalyst, liquid water, electrolyte, and void space. The Stefan-Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Due to the low relative species' velocity, the Darcy law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is used to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. A sensitivity analysis is carried out to investigate the effects of pressure drop in the channel, permeability, inlet relative humidity and shoulder/channel ratio on the performance of the cell.; Electron transport is shown to play an important role in determining the overall performance of the cathode. With a serpentine flow field, the oxygen consumption occurs more aggressively at the areas under the land since electrons are readily available at these areas. In addition, the reaction increases along the catalyst layer thickness and occurs more rapidly at the catalyst layer/membrane interface. The losses due to electron transport are much higher than those due to the proton transport. The sensitivity analysis put forward illustrated that with the increase of pressure drop along the channel flow field, the performance of the cell and liquid water removal are enhanced. Similarly, an increase in permeability of the porous material results in an increase in liquid water removal and cell performance. Further, the investigation of the inlet relative humidity effects revealed that the electrolyte conductivity has a significant effect on the performance up to a point. On a similar fashion, a decrease in shoulder/channel width ratio leads to an increase in performance and an increase in the leakage between neighboring channels. Finally, the addition of heat is shown to have a negative effect on the cell performance.; Some recommendations can be drawn from the results of this thesis. It is recommended to develop a model to study the flow in the channel flow field in order to investigate the effects of the channel flow on the transport of species in the cell. Further, the geometry of the channel should be studied. Finally, the production of water should be analyzed. The analysis should be extended to investigate its production in vapor form only and its production as a mixture of vapor and liquid.
机译:对低排放至零排放的替代能源的需求导致了聚合物电解质膜燃料电池的发展。 PEM燃料电池是一种电化学装置,通过使用氢作为燃料,氧作为氧化剂,水作为该反应的副产物,将化学能转化为电能。这些电池商业化的主要障碍之一是由于缓慢的氧气扩散和缓慢的电化学反应而在阴极上发生的损耗,液态水的存在进一步加剧了这种损耗。在文献中发现了大量的数值和数学模型,它们研究了阴极中的传输现象及其对电池性能的影响。本文提出了二维稳态半电池模型的讨论。使用商业软件COMSOL Multiphysics求解质量,动量,物质电荷和能量的守恒方程。守恒方程式适用于阴极双极板,气体扩散层和催化剂层。假定气态物质在通道中的流动是均匀的。假定催化剂层由催化剂,液态水,电解质和空隙空间的均匀分布组成。 Stefan-Maxwell方程用于模拟气体扩散和催化剂层中的多种扩散。由于相对物种的速度较低,因此,达西定律用于描述气体扩散和催化剂层中气相和液相的传输。蛇形流场用于将氧化剂分布在活性阴极电极表面上,并在沿着通道的流动方向上造成压力损失。进行敏感性分析以研究通道中的压降,渗透性,入口相对湿度和台肩/通道比对电池性能的影响。电子传输在决定阴极的整体性能方面起着重要作用。在蜿蜒的流场中,由于在这些区域容易获得电子,所以氧气消耗在陆地下方的区域更加剧烈地发生。另外,反应沿着催化剂层的厚度增加,并且在催化剂层/膜界面处更快地发生。由于电子传输造成的损失要比由于质子传输造成的损失高得多。灵敏度分析表明,随着沿通道流场的压降的增加,电池的性能和液体水的去除能力得到增强。类似地,多孔材料的渗透性的增加导致液体水去除和电池性能的增加。此外,对进口相对湿度影响的研究表明,电解质的导电性对性能的影响到一定程度。以类似的方式,肩部/通道宽度比的减小导致性能的提高和相邻通道之间的泄漏的增加。最后,显示热量的增加对电池性能有负面影响。从本文的研究结果可以得出一些建议。建议研究模型以研究通道流场中的流动,以研究通道流对细胞中物种迁移的影响。此外,应研究通道的几何形状。最后,应分析水的产生。应扩大分析范围,以仅调查其蒸气形式的生产以及作为蒸气和液体混合物的生产。

著录项

  • 作者

    Zamel, Nada.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mechanical.; Energy.
  • 学位 M.A.Sc.
  • 年度 2007
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ; 能源与动力工程 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号