首页> 外文学位 >Characterization of polarons and excitons in monodisperse platinum acetylide materials.
【24h】

Characterization of polarons and excitons in monodisperse platinum acetylide materials.

机译:单分散乙炔铂材料中极化子和激子的表征。

获取原文
获取原文并翻译 | 示例

摘要

The overall goal of this work was to design, synthesize and characterize various series of platinum-acetylide oligomers in order to better understand the structure-property relationships in these types of materials. Specifically, this research sought to further define the photophysical properties of both triplet excitons and negative polarons in these molecules by means of both steady-state and time-resolved methods. The results of this work not only provide insight into the synthesis of monodisperse organometallic oligomers, but they also provide a more in-depth understanding of both the structure and dynamics of excited and charged states within conjugated systems that feature organometallic or metal-organic moieties.;First, we report the synthesis and characterization of a series of monodisperse platinum-acetylide oligomers PtnNDI2, where NDI is an easily reducible end group. The oligomers were synthesized via an iterative-convergent approach utilizing organometallic synthons that feature orthogonally protected terminal acetylene units. The oligomers were characterized by electrochemistry, UV-visible absorption and photoluminescence spectroscopy. The emission spectra reveal that the triplet exciton is efficiently quenched in the NDI end-capped oligomers, and the quenching is thought to arise due to exciton migration followed by photoinduced charge separation.;Variable temperature steady-state emission studies, pulse radiolysis measurements and ultrafast transient absorption measurements were applied to examine the transport dynamics of negative polaron and triplet exciton states in the PtnNDI2 series. Ultrafast single shot experiments, compared to simulated random-walk data, reveal trapping of the anion radical for Pt10NDI2 in short times with the lifetime for polaron diffusion estimated to be ∼27 ps. Low temperature emission studies reveal that the rate-limiting step for exciton quenching is exciton diffusion. Femtosecond transient absorption data was coupled with simulation data to extract a triplet exciton hopping rate of ∼27.2 ps.;Another series of platinum-acetylide oligomers PhnPt 2 were also synthesized, consisting of a phenylene ethynylene core of varying length capped by platinum end groups. The study was meant to examine the effects on excited state properties between two platinum moieties of increasing organic spacer distances. Optical data conclude that the singlet exciton remains highly delocalized throughout the series, but approaching its limit. The extent of delocalization in triplet exciton seems to have been reached by Ph 4Pt2, and phosphorescence yields at ambient temperatures decreased with increasing spacer length until emission was almost elusive in the n=9 oligomer.
机译:这项工作的总体目标是设计,合成和表征各种系列的铂-乙炔低聚物,以便更好地了解这些类型材料中的结构-特性关系。具体而言,本研究试图通过稳态和时间分辨方法进一步定义这些分子中三重态激子和负极化子的光物理性质。这项工作的结果不仅为单分散有机金属低聚物的合成提供了见识,而且还提供了对具有有机金属或金属有机部分的共轭体系中激发态和带电态的结构和动力学的更深入了解。 ;首先,我们报告了一系列单分散的铂-乙炔铂低聚物PtnNDI2的合成和表征,其中NDI是易于还原的端基。通过使用具有正交保护的末端乙炔单元的有机金属合成子的迭代-收敛方法合成低聚物。通过电化学,紫外可见吸收和光致发光光谱对低聚物进行表征。发射光谱表明,三重态激子在NDI封端的低聚物中得到了有效淬灭,并且认为淬灭是由于激子迁移并随后进行光诱导的电荷分离引起的;各种温度稳态发射研究,脉冲辐解测量和超快瞬态吸收测量用于检查PtnNDI2系列中负极化子和三重态激子态的传输动力学。与模拟的随机游走数据相比,超快单发实验显示,Pt10NDI2的阴离子自由基在短时间内被捕获,极化子扩散的寿命估计约为27 ps。低温发射研究表明,激子猝灭的限速步骤是激子扩散。飞秒瞬态吸收数据与仿真数据相结合,提取出约27.2 ps的三重态激子跳跃率;还合成了另一系列的铂-乙炔低聚物PhnPt 2,其由长度不同的亚苯基亚乙炔基核覆盖,并由铂端基封端。该研究旨在检查有机间隔物距离增加对两个铂部分之间的激发态性能的影响。光学数据得出结论,单重态激子在整个序列中仍然高度离域,但已接近极限。 Ph 4Pt2似乎已达到三重态激子中的离域程度,并且在环境温度下,磷光收率随间隔物长度的增加而降低,直到在n = 9低聚物中几乎无法发光为止。

著录项

  • 作者

    Keller, Julia Marie.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号