首页> 外文学位 >Transport and link-level protocols for wireless networks and extreme environments.
【24h】

Transport and link-level protocols for wireless networks and extreme environments.

机译:无线网络和极端环境的传输和链路级协议。

获取原文
获取原文并翻译 | 示例

摘要

The widespread deployment of wireless links and the expected explosion in the use of wireless broadband systems makes it important for link and transport layer protocols to perform well in these environments. Wireless paths, especially multi-hop paths present challenges in terms of bounded end-to-end delay, end-to-end packet error rate (PER) experienced by the transport layer and achievable goodput. Current transport protocols such as TCP-SACK are known to fail as the PER goes above 5% PER.;In this thesis, we develop transport and link-level protocols that use the principles of fragmentation, loss estimation and Forward Error Correction (FEC). Our design structures these building blocks to perform well even under high loss rates (up to 50% PER). Analysis of the scheme enables us to tune the protocols based on their different needs while providing insight into the most favorable configuration. We also illuminate the issue of balance of functionality and interactions between the link and transport layers. At the link layer, these mechanisms are designed to meet the objectives of having bounded delay while exporting a negligible residual error rate. Link-layer mechanisms are designed to be robust under conditions of disruptions when no communication is possible. This is accomplished by using mode-switching and outage detection techniques designed to combat disruptions. However, over multi-hop paths, per-hop residual loss rates may aggregate and result in significant end-to-end loss rates (¿ 5%). Link-level mechanisms by themselves are insufficient and support at the transport layer is needed under high end-to-end loss rate scenarios. At the transport layer, we concentrate on tackling the residual error rate while operating on a longer time-scale. Our contributions include: (a) A highly loss-tolerant TCP protocol (LT-TCP) using an adaptive, end-to-end hybrid ARQ/FEC reliability strategy exploiting ECN for congestion detection. (b) A link-layer hybrid ARQ/FEC protocol (LL-HARQ) resulting in small residual PER, bounded link latency and high goodput even under bursty/high loss and outage conditions. (c) Demonstration that the combination achieves improved end-to-end performance (delay, loss and goodput) over traditional approaches. We present performance results for a comprehensive set of scenarios including different loss/error models as well as under different (1-hop and multi-hop) topologies.;We then tested the LT-TCP protocol in an 802.11b setting where we consider errors introduced by cross-system interference (by modeling Bluetooth traffic) as well as co-channel interference (by modeling two interfering 802.11 cells). We find that such setups are susceptible to "capture" or channel outages and that LT-TCP can provide benefits under such capture scenarios, particularly as the RTT increases. Measurements on the Open-Access Research Testbed for Next-Generation Wireless Networks (ORBIT) were used to study the impact of noise-induced errors on the performance of currently deployed protocols in real systems. We show how the performance of current protocols degrades as the error rate go up and how retransmissions at the link layer can lead to unwanted interactions between link and transport layers. These measurements give insights into the impact of wireless packet losses and bolster the case for developing protocols that are robust to high loss rates. Finally, we used real-world traces gathered from airplane flights to study the nature of outage and disruption events and to model packet losses on airborne wireless links. These link characteristics and models of packet losses were used to test and refine our link and transport protocols and to validate the efficacy of our proposed solutions under realistic conditions.
机译:无线链路的广泛部署以及无线宽带系统使用的预期爆炸性增长,对于链路和传输层协议在这些环境中表现良好至关重要。无线路径(尤其是多跳路径)在有限的端到端延迟,传输层所经历的端到端分组错误率(PER)和可达到的吞吐量方面提出了挑战。当PER超过5%PER时,已知诸如TCP-SACK之类的当前传输协议会失败;在本论文中,我们开发了使用分段,损耗估计和前向纠错(FEC)原理的传输和链路级协议。 。我们的设计构建了这些构建基块,即使在高损失率(高达50%PER)下也能表现良好。对方案的分析使我们能够根据协议的不同需求来调整协议,同时深入了解最有利的配置。我们还将阐明链路与传输层之间功能和交互之间的平衡问题。在链路层,这些机制旨在满足具有有限延迟的目标,同时输出可忽略的残余错误率。链路层机制被设计为在无法通信的中断条件下具有鲁棒性。这可以通过使用旨在抵抗干扰的模式切换和中断检测技术来实现。但是,在多跳路径上,每跳的剩余丢失率可能会累积并导致显着的端到端丢失率(5%)。链路级机制本身是不够的,在端到端丢失率较高的情况下,需要在传输层提供支持。在传输层,我们专注于处理残差错误率,同时需要更长的时间范围。我们的贡献包括:(a)使用自适应,端到端混合ARQ / FEC可靠性策略,利用ECN进行拥塞检测的高度容错TCP协议(LT-TCP)。 (b)链路层混合ARQ / FEC协议(LL-HARQ)即使在突发性/高丢失和中断条件下也导致较小的残留PER,有限的链路等待时间和高吞吐量。 (c)证明该组合比传统方法具有更高的端到端性能(延迟,损耗和吞吐量)。我们提供了一组综合场景的性能结果,这些场景包括不同的丢失/错误模型以及不同的(1-hop和多跳)拓扑。;然后我们在考虑错误的802.11b设置中测试了LT-TCP协议由跨系统干扰(通过对蓝牙流量建模)以及同信道干扰(通过对两个干扰802.11单元进行建模)引入。我们发现,这样的设置容易受到“捕获”或通道中断的影响,并且LT-TCP在这种捕获方案下可以提供好处,尤其是随着RTT的增加。下一代无线网络(ORBIT)的开放访问研究试验台上的测量用于研究噪声引起的错误对实际系统中当前部署协议的性能的影响。我们展示了当前协议的性能如何随着错误率的上升而降低,以及链路层的重传如何导致链路层与传输层之间发生不必要的交互。这些测量结果可以洞悉无线数据包丢失的影响,并为开发对高丢失率稳定的协议提供支持。最后,我们使用从飞机飞行中收集的真实轨迹来研究中断和中断事件的性质,并模拟机载无线链路上的数据包丢失。这些链路特征和数据包丢失模型用于测试和完善我们的链路和传输协议,并在现实条件下验证我们提出的解决方案的有效性。

著录项

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号