首页> 外文学位 >A particle filtering-based framework for on-line fault diagnosis and failure prognosis.
【24h】

A particle filtering-based framework for on-line fault diagnosis and failure prognosis.

机译:基于粒子过滤的在线故障诊断和故障预测框架。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents an on-line particle-filtering-based framework for fault diagnosis and failure prognosis in nonlinear, non-Gaussian systems. The methodology assumes the definition of a set of fault indicators, which are appropriate for monitoring purposes, the availability of real-time process measurements, and the existence of empirical knowledge (or historical data) to characterize both nominal and abnormal operating conditions.; The incorporation of particle-filtering (PF) techniques in the proposed scheme not only allows for the implementation of real time algorithms, but also provides a solid theoretical framework to handle the problem of fault detection and isolation (FDI), fault identification, and failure prognosis. Founded on the concept of sequential importance sampling (SIS) and Bayesian theory, PF approximates the conditional state probability distribution by a swarm of points called "particles" and a set of weights representing discrete probability masses. Particles can be easily generated and recursively updated in real time, given a nonlinear process dynamic model and a measurement model that relates the states of the system with the observed fault indicators.; Two autonomous modules have been considered in this research. On one hand, the fault diagnosis module uses a hybrid state-space model of the plant and a particle-filtering algorithm to (1) calculate the probability of any given fault condition in real time, (2) estimate the probability density function (pdf) of the continuous-valued states in the monitored system, and (3) provide information about type I and type II detection errors, as well as other critical statistics. Among the advantages offered by this diagnosis approach is the fact that the pdf state estimate may be used as the initial condition in prognostic modules after a particular fault mode is isolated, hence allowing swift transitions between FDI and prognostic routines. The failure prognosis module, on the other hand, computes (in real time) the pdf of the remaining useful life (RUL) of the faulty subsystem using a particle-filtering-based algorithm. This algorithm consecutively updates the current state estimate for a nonlinear state-space model (with unknown time-varying parameters) and predicts the evolution in time of the fault indicator pdf. The outcome of the prognosis module provides information about the precision and accuracy of long-term predictions, RUL expectations, 95% confidence intervals, and other hypothesis tests for the failure condition under study. Finally, inner and outer correction loops (learning schemes) are used to periodically improve the parameters that characterize the performance of FDI and/or prognosis algorithms. Illustrative theoretical examples and data from a seeded fault test for a UH-60 planetary carrier plate are used to validate all proposed approaches.; Contributions of this research include: (1) the establishment of a general methodology for real time FDI and failure prognosis in nonlinear processes with unknown model parameters, (2) the definition of appropriate procedures to generate dependable statistics about fault conditions, and (3) a description of specific ways to utilize information from real time measurements to improve the precision and accuracy of the predictions for the state probability density function (pdf).
机译:本文提出了一个基于粒子滤波的在线框架,用于非线性非高斯系统的故障诊断和故障预测。该方法假设了一组故障指示器的定义,这些指示器适用于监视目的,实时过程测量的可用性以及经验性知识(或历史数据)的存在,以表征正常和异常工作条件。提出的方案中结合了粒子滤波(PF)技术,不仅可以实现实时算法,而且还提供了坚实的理论框架来处理故障检测和隔离(FDI),故障识别和故障问题。预后。基于顺序重要性抽样(SIS)和贝叶斯理论的概念,PF通过称为“粒子”的大量点和代表离散概率质量的一组权重来近似条件状态概率分布。给定一个非线性过程动态模型和一个将系统状态与观察到的故障指示器联系起来的测量模型,可以轻松地实时生成和递归更新粒子。这项研究考虑了两个自治模块。一方面,故障诊断模块使用工厂的混合状态空间模型和粒子滤波算法来(1)实时计算任何给定故障条件的概率,(2)估计概率密度函数(pdf )中的连续值状态,以及(3)提供有关I型和II型检测错误的信息,以及其他重要统计信息。这种诊断方法提供的优势之一是,在隔离特定的故障模式之后,pdf状态估计可以用作诊断模块中的初始条件,因此可以在FDI和诊断程序之间进行快速转换。另一方面,故障预测模块使用基于粒子过滤的算法(实时)计算故障子系统的剩余使用寿命(pdf)。该算法连续更新非线性状态空间模型(具有未知时变参数)的当前状态估计,并预测故障指示器pdf随时间的变化。预后模块的结果提供了有关长期预测的准确性和准确性,RUL期望,95%置信区间以及正在研究的故障情况的其他假设检验的信息。最后,内部和外部校正循环(学习方案)用于定期改善表征FDI和/或预测算法性能的参数。说明性的理论示例和来自UH-60行星架板的种子故障测试的数据用于验证所有建议的方法。这项研究的贡献包括:(1)建立模型参数未知的非线性过程中实时FDI和故障预测的通用方法;(2)定义适当的程序以生成有关故障情况的可靠统计数据;以及(3)对利用实时测量信息来提高状态概率密度函数(pdf)的预测的准确性和准确性的特定方式的描述。

著录项

  • 作者

    Orchard, Marcos E.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:39:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号