首页> 中文学位 >MIMO雷达稀疏成像的失配问题研究
【6h】

MIMO雷达稀疏成像的失配问题研究

代理获取

目录

声明

摘要

表格索引

插图索引

主要符号对照表

第一章 绪论

1.1 雷达成像的研究背景

1.2 稀疏成像技术的发展与研究现状

1.3 MIMO雷达稀疏成像主要面临的问题

1.4 论文主要工作及内容安排

第二章 MIMO雷达稀疏成像基础

2.1 引言

2.2 MIMO雷达分类

2.3 MIMO雷达成像回波模型

2.4 基于点扩散函数的成像性能

2.5 基于空间谱的成像性能

2.5.1 极限分辨率

2.5.2 无模糊距离

2.6 基于正交匹配追踪算法的成像性能分析

2.6.1 正交匹配追踪算法

2.6.2 算法性能分析

2.7 小结

第三章 相位误差引起的MIMO雷达稀疏成像失配问题

3.1 引言

3.2 相位误差对MIMO雷达成像的影响

3.2.1 存在相位误差的回波模型

3.2.2 相位误差对点扩散函数的影响

3.3 存在相位误差时正交匹配追踪算法的成像性能分析

3.4 相位误差校正的MIMO雷达稀疏成像方法

3.4.1 基于期望最大化的稀疏成像算法

3.4.2 仿真分析

3.5 本章小结

第四章 载频偏差引起的MIMO雷达稀疏成像失配问题

4.1 引言

4.2 载频偏差对MIMO雷达成像的影响

4.2.1 存在载频偏差的回波模型

4.2.2 载频偏差对点扩散函数的影响

4.3 存在载频偏差时正交匹配追踪算法的成像性能分析

4.4 载频偏差校正的MIMO雷达稀疏成像方法

4.4.1 基于有界扰动的稀疏成像算法

4.4.2 仿真分析

4.5 本章小结

第五章 网格失配引起的MIMO雷达稀疏成像失配问题

5.1 引言

5.2 存在网格失配时正交匹配追踪算法的成像性能分析

5.2.1 基于Band-excluded的正交匹配追踪算法

5.2.2 算法性能分析

5.2.3 仿真分析

5.3 无网格划分的MIMO雷达稀疏成像方法

5.3.1 基于连续参数估计的稀疏成像算法

5.3.2 算法性能分析

5.3.3 仿真分析

5.4 小结

第六章 总结与展望

6.1 本文工作的总结

6.2 本文工作的展望

参考文献

附录

致谢

在读期间发表的学术论文与取得的研究成果

展开▼

摘要

MIMO(Multiple input Multiple output,MIMO)雷达是指利用多个发射和接收天线同时对目标进行观测的一种新构型的雷达系统。阵列构型设计和波形分集技术使MIMO雷达能够获得远多于实际物理阵元数目的观测通道和空间自由度。通过对观测通道回波的联合处理,相比于传统成像雷达,MIMO雷达在成像的方位向分辨率、实时性和运动补偿等方面有明显的性能优势。进一步的,为克服信号带宽和系统采样频率在实现高分辨率成像时对雷达系统设计和实现的困难和限制,基于压缩感知(Compressed Sensing,CS)的MIMO雷达稀疏成像开始受到广泛的关注,是当前的一个研究热点。由CS理论可知,MIMO雷达的稀疏重构(即,反演)性能依赖于观测矩阵的性质,因此一个精确已知的观测矩阵是获得好的反演结果的前提条件。众所周知,MIMO雷达的观测矩阵由雷达系统参数和成像场景的网格点共同决定,如果其中任一的一个因素存在不确定性都将导致实际观测矩阵不再与默认的观测矩阵一致,这种观测矩阵的失配必然对成像算法的有效性、可靠性和稳健性提出了挑战。因此,研究观测矩阵失配对MIMO雷达稀疏成像的影响是有实际应用意义的。
  本文采用正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)作为反演算法的比较基准,围绕系统参数和成像场景网格点这两类因素的不确定性,重点研究和分析观测矩阵失配的产生机理、OMP算法在实现有效反演时对这些不确定性的承受能力、以及高效重构算法等问题,主要的研究内容如下:
  1、针对相位分集和频率分集两种波形分集方式,建立了对应紧凑式MIMO雷达系统的回波模型,分别从点扩散函数和空间谱的角度推导了成像分辨率和无模糊距离的解析表达式,重点分析了两种角度下对成像分辨率描述的差异。详细介绍了OMP算法的算法流程和基于互相关系数的重构性能推导过程。同时,根据互相关系数和点扩散函数之间的紧密联系,确定了通过点扩散函数来分析观测矩阵失配和稀疏反演性能的可行性。
  2、对于系统可能存在的发射-接收通道随机相位误差,基于其在回波相位中不与散射点坐标信息耦合的先验假设,在MIMO雷达系统中建立了含有相位不确定性的回波模型,分析了这一类随机相位误差对观测矩阵的作用形式,表现为一左乘对角扰动矩阵。进一步的,利用受扰动的点扩散函数和相位误差的随机特性,分析了左乘扰动矩阵对OMP算法成像的影响,主要表现为幅度衰减且衰减程度由相位的波动范围决定。特别地,根据推导的OMP算法重构性能,分别在支撑集恢复和幅值估计两方面推导了OMP算法对相位误差的容限。考虑到回波中随机相位误差是一隐含变量的事实,引入期望最大化(ExpectationMaximization,EM)方法,根据最大后验概率准则,提出了期望最大化的稀疏成像算法(Sparse Imaging via EM,SIEM),仿真结果显示在存在相位误差时SIEM比OMP具有更稳定的反演性能。
  3、对于系统可能存在的发射-接收通道载频偏差,在相位分集MIMO雷达系统中建立了含有发射、接收载频不确定性的解析回波模型,回波表达式表明载频偏差不仅在回波相位中与散射点位置信息强耦合,而且会影响通道分离的性能,导致通道分离残差的出现。相比随机相位误差,载频偏差引起更加复杂、严重的观测矩阵失配。根据受扰动点扩散函数的峰值变化,分析得到了载频偏差对OMP算法成像的影响集中表现为对点扩散函数峰值的衰减,然后进一步推导了存在载频偏差时OMP算法的反演性能变化以及OMP算法支撑集恢复和幅值估计对载频偏差的容限。通过将载频偏差引起的观测矩阵失配表示为一个具有有界Frobenius范数约束的加性扰动矩阵,提出了基于有界扰动的稀疏成像算法(Sparse Imaging based on Frobenius-nrom-bounded Perturbation, SIFrobP)。根据有界扰动的一般性假设,SIFrobP算法的适用范围广泛,可适用于实际观测矩阵中存在任意未知不确定性的场景。
  4、研究了连续成像场景的离散化网格与真实目标散射点之间存在不确定性时的网格失配问题。从细化网格提高散射点位置估计精度的角度,将基于Band-exclusion技术的改进型OMP算法(Band-excluded OMP,BOMP)引入MIMO雷达稀疏成像,利用点扩散函数指导相关带门限值的设置使BOMP算法成像的低分辨率得到了有效地改善。同时,从摒弃对连续成像场景网格化的角度出发,提出了基于连续参数估计的MIMO雷达稀疏成像方法(Sparse Imagingvia Continuous Parameter Estimate, SICPE),推导了算法的性能条件。该算法不仅避免了经典稀疏重构算法对网格的依赖性,而且可以在发射/接收端稀疏布阵或非均匀采样时均获得较好的稀疏成像结果。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号