首页> 中文学位 >单跨三层预压装配式预应力混凝土框架抗震性能试验与理论研究
【6h】

单跨三层预压装配式预应力混凝土框架抗震性能试验与理论研究

代理获取

目录

声明

致谢

摘要

第一章 绪论

1.1 前言

1.2 国外预制装配式结构的发展概况

1.2.1 国外预制装配式结构的应用

1.2.2.国外预制装配式结构的研究

1.3 国内预制装配式结构的发展概况

1.3.1 国内预制装配式结构的应用

1.3.2.国内预制装配式结构的研究

1.4 预制装配式结构抗震性能

1.4.1 预制装配式结构震害分析

1.4.2 预制装配式结构节点连接方式

1.5 预压装配式预应力混凝土结构

1.5.1 预压装配式连接方式

1.5.2 日本压着工法施工技术

1.5.3 预压装配式预应力混凝土技术

1.6 预制装配式混凝土结构抗倒塌机制和防控技术

1.6.1 预制装配式混凝土结构抗倒塌问题的提出

1.6.2 国外结构抗连续倒塌研究现状

1.6.3 国内结构抗连续倒塌研究现状

1.6.4 预制装配式结构抗连续倒塌需要解决的问题

1.7 课题的研究内容

第二章 预压装配式预应力混凝土三层框架试验

2.1 试验概况

2.1.1 试件设计

2.1.2 试验加载装置及量测内容

2.2 试验加载制度

2.2.1 拟动力试验加载制度

2.2.2 拟静力试验加载制度

2.3 试验加载过程

2.3.1 拟动力试验加载过程

2.3.2 拟静力试验加载过程

2.4 本章小结

第三章 预压装配式预应力混凝土三层框架试验结果

3.1 拟动力试验结果及分析

3.1.1 位移、恢复力时程曲线

3.1.2 恢复力-位移滞回曲线

3.1.3 框架位移、恢复力峰值及变形能力

3.2 框架拟静力试验结果及分析

3.2.1 滞回曲线

3.2.2 变形恢复能力

3.2.3 骨架曲线

3.2.4 层间位移角

3.2.5 刚度退化

3.2.6 耗能能力

3.3 梁端拟静力试验变形分析

3.3.1 梁截面应变分布

3.3.2 梁端截面破坏形式

3.3.3 滞回曲线

3.3.4 梁端延性

3.3.5 梁端截面的耗能能力

3.4 框架节点试验变形分析

3.4.1 节点核心区的裂缝分布及损伤状态

3.4.2 节点核心区的受力状态分析

3.4.3 节点核心区剪切角滞回曲线

3.4.4 节点核心区剪力传递机理分析

3.5 本章小结

第四章 预压装配式预应力混凝土框架静力弹塑性分析

4.1 静力弹塑性Pushover分析方法

4.1.1 Pushover分析方法的基本原理

4.1.2 等效单自由度体系的转换

4.1.3 Pushover分析的方法与步骤

4.1.4 Pushover分析的水平加载模式

4.2 预压装配式框架Pushover分析模型的建立

4.2.1 分析模型的建立

4.2.2 塑性铰的定义与设置

4.2.3 水平加载模式和分析工况的设置

4.3 预压装配式框架Pushover分析结果

4.3.1 基底剪力与顶点位移关系

4.3.2 层间位移和位移角

4.3.3 框架变形计算值与试验值比较

4.3.4 框架的破坏机制

4.3.5 框架出铰分析结果与试验状况比较

4.4 本章小结

第五章 预压装配式预应力混凝土框架动力时程分析

5.1 建立结构动力平衡方程的基本方法

5.1.1 动平衡法

5.1.2 拉格朗日方程法

5.2 弹塑性动力方程的求解

5.2.1 中心差分法

5.2.2 线性加速度法

5.2.3 平均加速度法

5.2.4 Newmark-β法

5.3 弹塑性时程分析有关理论

5.3.1 弹塑性时程分析所采用的阻尼理论

5.3.2 MIDAS/Gen恢复力模型

5.3.3 地震波的选择

5.4 弹性动力时程分析

5.5 弹塑性动力时程分析

5.5.1 位移时程曲线

5.5.2 框架各层层间位移

5.5.3 框架各层层间位移角

5.5.4 框架破坏特征分析

5.6 不同地震波作用下框架弹塑性时程分析

5.6.1 位移时程曲线

5.6.2 框架各层位移

5.6.3 框架各层层间位移

5.6.4 框架各层层间位移角

5.6.5 框架塑性铰分布情况

5.7 本章小结

第六章 预压装配式预应力混凝土框架抗连续倒塌模拟

6.1 连续倒塌的机理

6.1.1 连续性倒塌的概念

6.1.2 防止连续倒塌的影响因素

6.1.3 连续倒塌的评判标准

6.2 抗倒塌国内外规范

6.2.1 英国规范

6.2.2 欧洲规范

6.2.3 美国规范

6.2.4 我国规范

6.3 规范设计方法归纳

6.3.1 概念设计法

6.3.2 拉结法

6.3.3 拆除构件法

6.3.4 关键构件设计

6.4 预压装配式框架抗倒塌模拟

6.4.1 试件设计

6.4.2 拉结法计算

6.4.3 拆除构件法分析

6.4.4 抗连续倒塌机制分析

6.5 结论

第七章 结论与展望

7.1 结论

7.2 展望

参考文献

攻读博士学位期间的学术活动及成果情况

展开▼

摘要

工厂化生产、装配程度提高是实现建筑产业现代化的重要途径。传统的装配式结构节点连接可靠性差,往往难以满足反复荷载下的受力要求,且缺乏抗连续倒塌的能力。本文将预应力技术应用于预制装配式混凝土结构,通过在节点区预压连接,形成整体受力节点和连续受力框架,提高了装配式结构的鲁棒性,改善了结构的抗震性能,使得预制装配式结构在地震区能得到较好的应用。
  本文通过对一榀单跨三层预压装配式预应力混凝土框架拟动力和拟静力试验,研究了预压装配式框架的动力特性、承载能力、滞回性能、截面延性及耗能能力等抗震性能;采用有限元分析软件对试验框架进行弹性和弹塑性动力时程分析和静力弹塑性分析,进一步探讨了试验框架的抗震性能;并通过对一榀两跨三层预压装配式混凝土框架的拉结法和拆除构件法的数值模拟,探讨了预压装配式框架的抗连续倒塌性能和倒塌机制。本文主要研究内容及成果如下。
  通过预压装配式框架进行水平加载拟动力试验,获得了不同加载工况下框架各层的位移时程曲线,恢复力时程曲线和位移-恢复力滞回曲线,得到不同工况条件下框架层间位移,层间位移角,层间剪力。了解预压装配式框架的动力性能、变形性能、刚度退化等抗震性能。试验框架在地震波峰值加速度PGA=102gal工况下,各层最大层间位移角为1/368,满足“小震不坏”的要求;在PGA=204gal工况下,各层最大层间位移角为1/137,满足“中震可修”的要求。
  通过预压装配式框架进行水平加载拟静力试验,获得了反复荷载下框架层间剪力-位移滞回曲线,以及框架梁端弯矩-转角滞回曲线,了解了试验框架承载能力、滞回性能、截面延性及耗能能力等抗震性能。框架屈服后,梁端率先出现塑性铰,柱刚度尚未出现大的退化,预压装配式框架属“强柱弱梁”型结构。试验框架一、二、三层层间极限位移角分别达到1/42、1/47、1/67,符合“大震不倒”的要求。一层、二层框架加载滞回曲线较为丰满,框架破坏时的粘滞阻尼系数he在0.065~0.087之间,具有良好的耗能能力。一层和二层梁端组合截面延性系数在3.64~5.62之间,具有较好的转动能力和延性。加载至极限状态,框架残余变形率在0.138~0.307之间,结构的变形恢复能力很好。框架破坏前,梁端塑性铰发生充分转动,预压装配式框架属“强柱弱梁”型结构。框架节点在竖向轴压力和水平预应力钢筋预压作用下处于双向受压状态,可满足“强节点”的要求。
  采用SAP2000对试验框架做静力弹塑性Pushover分析,得到框架的计算基底剪力-顶点位移关系曲线。对比框架的实测基底剪力-顶点位移关系曲线,框架正向加载和反向加载承载力实测值与计算值误差分别为17.7%和1.4%,计算值与实测值吻合较好。在Pushover推覆分析过程中得到框架出现塑性铰的位置及顺序图,框架塑性铰先出现在底层梁端,再出现在上层梁端,最后出现在柱脚,表明该框架的破坏机制为整体屈服机制,具有良好的抗震性能。
  应用有限元分析软件MIDAS/Gen对试验框架进行弹性动力时程分析,得到试验框架的计算位移时程曲线,将计算位移与试验位移进行比较,验证计算方法的可行性。选用框架进行拟动力试验时相同的地震波,调整峰值加速度强度,对试验框架进行弹塑性动力时程分析,得到了其弹塑性状态下位移反应,在框架破坏时,梁端的铰状态均达到Level-4状态,框架柱脚的铰状态达到Level-5状态,塑性铰的延性系数均大于4,框架能够满足“强柱弱梁”的要求,具有良好的延性和耗能能力。
  通过对预压装配式预应力混凝土框架的拉结强度设计和拆除构件法设计的模拟,研究了预压装配式框架在不同工况下拆除失效柱后,剩余结构的抗倒塌能力和抗连续倒塌机制。分析表明,预压装配式框架除顶层边柱外,其余剩余结构的稳定性较好,抗倒塌能力很强。由于预应力筋的存在,边柱破坏时,在小变形范围内,框架梁以梁机制提供抗连续倒塌能力,在大变形范围内,框架梁在此阶段不能以悬链线机制提供抗连续倒塌能力。中柱破坏时,框架梁均可通过梁机制或悬链线机制提供抗连续倒塌能力。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号