首页> 中文学位 >微纳光纤环MOEMS加速度传感器理论与应用研究
【6h】

微纳光纤环MOEMS加速度传感器理论与应用研究

代理获取

目录

文摘

英文文摘

第1章绪论

§1.1加速度传感器概述

§1.1.1加速度传感器的测量原理

§1.1.2加速度传感器的发展

§1.2 MEMS加速度传感器

§1.2.1微机械加速度传感器的发展

§1.2.2典型的微机械加速度传感器

§1.3 MOEMS与MOEMS加速度传感器

§1.3.1 MOEMS的基本概念

§1.3.2目前MOEMS加速度传感器的研究状况

§1.4本文主要研究内容

§1.4.1课题背景

§1.4.2研究目标与主要工作

参考文献

第2章 微纳光纤环形谐振腔传输理论及特性研究

§2.1亚微米直径微光纤的传输理论

§2.1.1光在亚微米直径的微光纤中的传输理论

§2.1.2微纳光纤的单模传输条件

§2.1.3单模传输条件下微光纤中的基模能量分布

§2.1.4微纳光纤传输中的群速和色散

§2.2亚微米直径微光纤的拉制及特性分析

§2.2.1亚微米直径微光纤的拉制

§2.2.2拉制完成的微光纤的传输损耗和抗拉强度分析

§2.3微纳光纤环形谐振腔的传输光谱特性

§2.3.1基本方程和传输谱分析

§2.3.2微光纤环形谐振腔的品质因素和精细度

§2.3.3微光纤环形谐振腔的耦合系数对品质因素的影响

§2.3.4传播空间的相对折射率对品质因素Q的影响

§2.4本章小结

参考文献

第3章 微光纤环形谐振腔的加速度传感理论

§3.1微光纤环形谐振腔加速度传感原理

§3.1.1微光纤环形谐振腔加速度传感理论

§3.1.2 MOEMS传感结构灵敏度和动态范围分析

§3.2微光纤环测量加速度的信号探测方法

§3.2.1加速度传感器输出光谱检测

§3.2.2加速度传感器输出光强检测

§3.4本章小结

参考文献

第4章MEMS传感结构设计与加工工艺研究

§4.1 MEMS加速度传感器的设计理论

§4.2 MEMS加速度传感器输出信号的信息组成

§4.2.1简化的力学模型和动力学方程

§4.2.2加速度传感器激励信号分析

§4.2.3加速度传感器输出信号所包含的加速度信息

§4.3微加速度传感器的主要性能指标以及测试方法

§4.4传感系统微结构设计和仿真分析

§4.4.1有限元方法概述

§4.4.2传感结构的选择和参数设计

§4.4.3传感结构的有限元分析结果

§4.5 MEMS传感结构的制作工艺研究

§4.5.1选材和刻蚀工艺设计

§4.5.2体硅湿法刻蚀工艺研究

§4.5.3加工结果分析

§4.6本章小结

参考文献

第5章 MOEMS加速度传感器制作与实验研究

§5.1微光纤环形谐振腔与MEMS传感结构的粘接

§5.1.1制作微光纤环的微操作系统

§5.1.2微光纤环与MEMS传感结构粘接的微操作

§5.2 MOEMS加速度传感器输出光谱的测量

§5.2.1 MOEMS加速度传感器的输出光谱分析

§5.2.2微光纤环形谐振腔输出光谱的实测结果

§5.3 MOEMS加速度传感器模拟高g值输出光谱的测量

§5.4 MOEMS加速度传感器重力场翻转的输出光强测量

§5.5 MOEMS加速度传感器输出光强的低频动态响应

§5.6 MOEMS加速度传感器温度效应的测试

§5.7微光纤环形谐振腔的温度噪声分析

§5.8 MOEMS加速度传感器的其它主要噪声分析

§5.8.1机械结构噪声(布朗Brownain噪声)

§5.8.2随机振动的噪声

§5.8.3吸附与解吸附噪声的影响

§5.9本章小结

参考文献

第6章 总结与展望

§6.1论文总结

§6.2未来工作和应用前景展望

攻读学位期间发表的学术论文

致谢

展开▼

摘要

本文提出了一种基于微纳光纤环形谐振腔的MOEMS加速度传感器结构。微纳光纤是一种介观量级的光波导线结构,它既不同于普通光纤,也不同于集成光波导,这种微纳光纤是利用大比例的倏逝波传输,具有高色散区、强倏逝波耦合、低弯曲损耗等特性。利用微纳光纤所制作的光学器件,在一定程度上既解决普通光纤制作的光学器件尺寸很难缩小的问题,同时又能弥补集成光波导器件制作难度高和损耗较大的缺点和不足,并且微纳光纤的制作过程相对于集成光波导的制作工艺更为简单可行。而由这种微纳光纤构成的环形谐振腔具有低损耗、品质因素高的特点,因此微纳光纤环形谐振腔可以作为一种高灵敏度的光学传感器件。微纳光纤环与硅MEMS传感结构相结合的MOEMS加速度传感器是一种体积小、重量轻、功耗低、灵敏度高、动态范围大的加速度传感器。本文的主要研究内容包括以下几个方面: 1、对加速度传感器的测量原理,发展历史和主要分类作了简要介绍。并结合MEMS和MOEMS的概念,分析了目前一些典型的MEMS和MOEMS加速度传感器的工作原理及各自的优缺点。提出了本文的主要研究内容,研究目标以及主要创新点。 2、详细介绍了亚微米直径微纳光纤的传输理论和制作方法,并分析了微纳光纤的物理特性。深入研究了由微纳光纤构成的环形谐振腔的传输特性,以及影响谐振腔Q值的主要因素。 3、结合微纳光纤环形谐振腔高Q值、高灵敏度的特点,我们首次提出了一种将微纳光纤环形谐振腔与硅MEMS传感结构相结合的加速度传感理论,并建立了基于该MOEMS加速度传感结构的数学模型,分析了其探测灵敏度和动态范围,并根据该传感结构的输出特性,提出了信号检测的方法。 4、围绕硅MEMS加速度传感结构的参数设计、有限元仿真、制作工艺等展开详细研究,确定了该MEMS传感结构的几何参数、制作方法以及工艺流程,最后通过双面环氧树脂聚合物保护的深度体硅湿法刻蚀工艺完成该MEMS传感结构的制作。 5、结合该MOEMS传感器的结构特点,我们构建了微纳光纤环与MEMS传感结构相粘接的微操作装置,并详细介绍了MOEMS加速度传感器的制作过程。通过实验对制作完成的MOEMS加速度传感器的输出光谱特性,模拟高g值的光谱检测、低频动态响应特性,重力场翻转输出光强的灵敏度检测以及温度效应进行了测试,测试结果表明我们制作的MOEMS加速度传感器采用光谱检测的方式可以实现超过30g大动态范围的测量,重力场翻转实验中输出光强的探测灵敏度为624.7mV/g,为普通商用MEMS加速度传感器实际输出灵敏度的6~10倍。而相关研究表明微光纤环形谐振腔的Q值还有较大的提升空间,随着微光纤环Q值的提高(从目前103增加到106),该MOEMS加速度传感器的探测灵敏度还将大幅提升。 文章最后对本文所涉及的研究工作进行了总结,并对未来的主要工作方向提出了展望。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号