首页> 中文学位 >玉米和芦笋中腐马素的污染分析及拟南芥对FB的抗性机理研究
【6h】

玉米和芦笋中腐马素的污染分析及拟南芥对FB的抗性机理研究

代理获取

目录

文摘

英文文摘

论文说明:图表目录、英文缩略词

声明

第1章绪论

1.1腐马素的概述

1.1.1概述

1.1.2腐马素理化性质

1.2腐马素的毒理研究

1.3农产品中腐马素污染

1.3.1世界各国对农产品中腐马素的研究

1.3.2我国腐马素污染的研究

1.4影响腐马素产生的因素

1.4.1产毒菌株的产毒能力

1.4.2产毒菌株侵染的材料

1.4.3外界环境因素

1.5腐马素安全性控制研究

1.5.1采前安全性控制

1.5.2采后安全性控制

1.6腐马素生物合成机理研究

1.6.1腐马素生物合成的前体

1.6.2腐马素生物合成基因与途径

1.6.3腐马素生物合成的调控

1.7腐马素及产毒菌检测分析方法

1.7.1腐马素检测方法

1.7.2腐马素产毒菌株检测方法

1.8腐马素B1在植物中致病性研究

1.8.1 FB1在植物中的致病机理

1.8.2 FB1诱导的植物细胞程序化死亡

1.8.3抗FB1突变体研究

1.9拟南芥中芥子油苷研究

1.9.1芥子油苷的化学结构及代谢

1.9.2芥子油苷生物合成与调控

1.9.3芥子油苷在植物防卫反应中的功能研究

1.10本研究的立题依据和研究目标

1.10.1立题依据

1.10.2研究目标

第2章HPLC-ELSD腐马素检测方法的建立及应用

2.1引言

2.2材料与方法

2.2.1实验材料

2.2.2实验方法

2.3结果与分析

2.3.1 HPLC—OPA衍生法的建立

2.3.2 HPLC—ELSD方法的建立

2.3.3 HPLC—ELSD法对玉米样品中腐马素的分析

2.4讨论

2.4.1 HPLC-ELSD方法与HPLC-OPA方法比较分析

2.4.2来自不同地区玉米中腐马素污染状况分析

2.5本章小结

第3章 食管癌高发区玉米及其玉米制品中腐马素污染状况分析

3.1引言

3.2材料与方法

3.2.1实验材料

3.2.2实验方法

3.3结果与讨论

3.4本章小结

第4章 我国不同地区玉米的腐马素与镰刀菌污染及菌株产毒分析

4.1引言

4.2材料与方法

4.2.1实验材料

4.2.2实验方法

4.3结果与分析

4.3.1玉米中镰刀菌及产毒菌污染状况

4.3.2 PCR检测及测序分析

4.3.3玉米中分离菌株产毒能力分析

4.4讨论

4.5本章小结

第5章 浙江省不同地区芦笋的腐马素与镰刀菌污染及菌株产毒分析

5.1引言

5.2材料与方法

5.2.1实验材料

5.2.2实验方法

5.3结果与分析

5.3.1芦笋中腐马素及产毒菌株污染状况

5.3.2 PCR检测及测序分析

5.3.3芦笋中分离菌株的产毒能力分析

5.4讨论

5.5本章小结

第6章拟南芥中抗腐马素B1突变体的筛选及初步研究

6.1引言

6.2材料与方法

6.2.1实验材料

6.2.2实验方法

6.3结果与分析

6.3.1抗FB1突变体筛选方法的确定

6.3.2两个fbr突变体的抗性分析

6.3.3正常生长条件下fbr41和fbr42性状分析

6.4讨论

6.5本章小结

第7章芥子油苷在拟南芥对FB1抗性中的作用

7.1引言

7.2材料与方法

7.2.1实验材料

7.2.2实验方法

7.3结果与分析

7.3.1拟南芥中芥子油苷对FB1的响应

7.3.2芥子油苷突变体对FB1抗性分析

7.3.3芥子油苷生物合成途径对FB1的响应

7.3.4抗FB1突变体中芥子油苷及合成途径对FB1的响应

7.4讨论

7.5本章小结

第8章结论、创新点与后续展望

8.1结论

8.2创新点

8.3后续展望

参考文献

附件1

致谢

作者简历

展开▼

摘要

腐马素(fumonisins)是由串珠镰刀菌和再誉镰刀菌等镰刀菌产生的一类真菌毒素。由于其化学结构与动植物中的神经鞘氨醇类物质类似,可以引起动物各种疾病以及植物病害。一方面,腐马素对某些牲畜有急性毒性及潜在的致癌性,如引起马脑炎、猪肺水肿或大鼠肝癌,还能引起人类食道癌和神经管缺陷,由于该毒素污染广泛,在玉米、玉米制品以及芦笋等农产品中都有报道,严重威胁食品安全及人类和动物的健康;另一方面,腐马素可以诱导植物的细胞程序化死亡以及过敏性反应,在模式植物拟南芥中腐马素诱导细胞程序化死亡是研究植物对化学胁迫的抗性、植物免疫机理以及神经鞘脂功能的良好体系。本研究中,建立了用于玉米等食品中腐马素检测的HPLC-ELSD方法,分析了我国不同地区,特别是食管癌高发区玉米和玉米制品上腐马素污染状况;结合LC-MS分析了浙江省芦笋中腐马素污染情况;并利用PCR检测和产毒培养等方法,研究了玉米及芦笋中产生腐马素的原因。此外,以拟南芥为材料,筛选并初步分析了两个抗FB1的突变体,同时研究了芥子油苷在拟南芥对FB1抗性中的作用。主要研究结果如下: 利用腐马素标准品和野生型串珠镰刀菌A0149产毒培养玉米为材料,结合常规的HPLC-OPA衍生法建立了不需要衍生的快速可靠的HPLC-ELSD方法,腐马素B1(FB1)在3-24μg之间其物质的量与峰面积分别取自然对数后有良好的线性关系,最低检出限约为60ng,可以同时检测B系列四种腐马素。利用该方法分析了我国东北地区、中东部地区和东南部地区玉米中腐马素的污染水平,结果表明,腐马素的整体污染水平较低,只检出了FB1,中东地区玉米阳性样品中腐马素范围在0.25-1.8μg/g(平均,0.74μg/g),检出率为66.7%(15/24),东北地区玉米阳性样品中腐马素范围在0.21-0.29μg/g(平均,0.24μg/g),检出率为28.6%(6/21),东南部地区玉米阳性样品中腐马素范围在0.30-3.13μg/g(平均,0.47μg/g),检出率为30.0%(6/20)。 我国的河南林县被认为是世界上食道癌发生与玉米中腐马素污染密切相关的地区之一。我们利用建立的HPLC-ELSD方法,研究了该地区不同来源和不同表观特征的玉米,以及不同玉米制品中腐马素的污染状况。结果表明,来自农户、粮仓,中心市场,商店以及超市的共140份玉米样品中FB1检出率分别为61.5%(16/26),50%(12/24),33.3%(12/36),17%(2/12),0%(0/6)。来自粮库的玉米样品中腐马素污染水平最高(0.25-1.80μg/g;平均,0.73μg/g),其次是来自农户(0,25-1.80μg/g;平均,0.73μg/g),而来自中心市场(0.25-1.10μg/g;平均,0.51μg/g)和商店较轻(0.22-0.34μg/g;平均,0.28μg/g)。对80个来自当地农户玉米样品分析后发现,24个霉变玉米样品中18个检出了较高水平的腐马素B1(0.28-3.30μ/g;平均,1.58μg/g),而56份外观健康的玉米中有20份也检出了腐马素B1(0.21-0.82μg/g;平均,0.46μg/g)。来自中心市场的115份玉米食品和饲料样品中,饲料中腐马素的含量最高(0.30-3.13μg/g;平均,1.50μg/g),其次是非加工食品(0.31-0.63μg/g,平均,0.47μg/g),加工食品中污染最轻(0.21-0.28μg/g,平均,0.25μg/g),其检出率分别为53.6%,33.3%和17.9%。总之,来自林县地区的玉米食品和玉米饲料中腐马素污染水平较低(<2μg/g),但是对粮仓和农户贮藏玉米的腐马素污染还需要采取措施加以控制。 为了研究玉米中腐马素污染的原因,我们采用形态学鉴定和分子检测相结合的办法,研究了收集玉米中镰刀菌的污染状况,并通过产毒培养方法分析了分离菌株的产毒能力。总体看来,玉米样品中真菌,镰刀菌和腐马素产毒菌的污染率分别为42.18%,35.94%和29.69%,其中镰刀菌和产毒菌分别占总污染菌的74.19%(23/31)和61.29%(19/31)。PCR检测和产毒培养结果表明,共有三种镰刀菌在玉米培养基上产生了腐马素,分别为串珠镰刀菌、再誉镰刀菌和胶孢镰刀菌。产毒能力分析表明,不同菌种之间以及相同菌种的不同菌株之间产毒能力差异显著,产毒菌株的产毒能力从186μg/g到16784μg/g,平均为4637μg/g,其中FB1占主要部分为87.1%(75.8-94.6%,平均产量4041μg/g);第二类主要毒素为FB2,平均产量为642μg/g,范围为46-2308μg/g,而且所有的串珠镰刀菌和再誉镰刀菌也都产生FB3,平均产量为189μg/g,范围为42-711μg/g。不同地区腐马素产毒菌株污染状况不同,其中以中东部地区污染最重,共从24份样品中分离到14个污染菌,其中9个为产毒菌,而且污染的镰刀菌种类也最多,除了串珠镰刀菌外,还有再誉镰刀菌、禾谷镰刀菌和木贼镰刀菌;东南部地区则最轻,从19份样品中分离到5个菌株,而且只有一株产毒菌株;东北地区21份玉米中共分离到12个菌株,所有的9个镰刀菌均为产毒菌株,包括两个产毒的胶孢镰刀菌。我们的研究表明,这些外观洁净的食用玉米中仍然存在腐马素及产毒菌的污染,这可能是采前受到产毒病原菌侵染,但采后过程中可能不适合产毒造成的,由于这些产毒菌的产毒能力较强,如果条件适宜,仍然存在大量毒素污染的可能性。 HPLC-ELSD和LC-MS分析都表明浙江省地区食用芦笋样品中没有腐马素污染。从22份芦笋样品中共分离到9株再誉镰刀菌,5株尖孢镰刀菌,1株木贼镰刀菌和1株锐顶镰刀菌,复合PCR分析表明,所有的再誉镰刀菌均扩增出了腐马素生物合成基因FUM1和FUM8片段,而且其产毒能力较强,在玉米培养基中总腐马素的平均产量为1603.5μg/g,范围27.8-4204.0μg/g,产生FB1为148.2-3850.2μg/g(平均,1355.9μg/g),产生FB2为21.4-543.0μg/g(平均,153.1μg/g),产生FB3为0-434.2μg/g(平均,106.4μg/g),其中5株属于高产毒菌(>500μg/g),3株属于中产毒菌(50-500μg/g)。而其他菌株则只检测到镰刀菌特异的ITS片段,产毒培养和液相分析证实了存在产毒争议的尖孢镰刀菌确实不能产生FBs。我们的结果表明,浙江省食用芦笋中没有腐马素的污染,但能够产生真菌毒素的镰刀菌污染较重,这些菌株不仅可以引起芦笋的病害而且可以产生对人体有害的真菌毒素,应引起重视并加以控制。 本研究还建立了一种拟南芥抗腐马素突变体的筛选方法,利用1μM的FB1培养基从EMS诱变的哥伦比亚生态型Col-0突变体库中筛选得到两株抗FB1的突变体fbr41和fbr42。在正常条件下,两个突变体表现出植株矮化,叶片边缘锯齿,以及侧根相对发达等异常表型;在1μMFB1培养基上,根毛发达,叶片变硬,只在根等部位产生少量活性氧,其抗性远强于激素突变体jar1,ein3-1,npr1和转基因NahG,最大FB1抗性浓度在2μM左右;遗传学分析表明,fbr41为隐性单基因突变。 10μMFB1外源处理野生型拟南芥Col-0后,HPLC分析表明,短链脂肪类芥子油苷含量下降,而长链脂肪类芥子油苷含量略有升高;吲哚基-3-甲基芥子油苷(Indol-3-ylmethylGS,IM)的含量明显下降,和而4-甲氧吲哚基-3-甲基芥子油苷(4-methoxyindol-3-ylmethylGS,41M)和1-甲氧吲哚基-3-甲基芥子油苷(1-methoxyindol-3-ylmethylGS,1IM)则明显升高;而长链脂肪类芥子油苷缺失但吲哚类含量高的突变体gsm1-3和所有芥子油苷组分都低的突变体gcc8同样在FB1处理后被极大地诱导了41M和1IM,而且gsm1-3表现出稍好的抗性,这预示不是长链脂肪类芥子油苷而可能是4IM和1IM参与了对FB1的抗性作用。对芥子油苷生物合成途径相关基因分析表明,与抗病相关的camalexin和IAA生物合成基因(PAD3和NIT2)的表达在处理与对照之间没有明显差异,而参与吲哚类芥子油苷生物合成的CYP8381却极大的上调;此外,我们对筛选的两个拟南芥抗FB1突变体的芥子油苷及其生物合成相关基因也进行了分析,结果表明,两个突变体中均含有显著高于野生型的4IM和1IM含量,而且CYP8381也被较早诱导。这些结果表明,拟南芥中吲哚类芥子油苷4IM和1IM的合成可能与拟南芥对FB1抗性有关,但其具体作用机理尚待进一步研究来阐明。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号