首页> 中文学位 >过渡金属掺杂SiC/Cu稀磁半导体超薄多层膜的结构,运输和磁性
【6h】

过渡金属掺杂SiC/Cu稀磁半导体超薄多层膜的结构,运输和磁性

代理获取

目录

第一个书签之前

展开▼

摘要

由于SiC是一种新型容易掺杂为宽带隙半导体的材料,它的制备工艺也较为成熟,选取SiC作为本论文的研究对象。但是,由于非磁性材料单独掺杂的性能不够好,进行磁性与非磁性材料共掺杂来改良材料的性能。同时,对SiC半导体的潜在巨磁阻性能进行了研究。 通过磁控溅射的方法,制备了SiC/Cu多层膜,通过多层膜方式交替沉积,增大了SiC和Cu的接触面积,Cu的饱和磁化强度低的问题得以解决。其中大致分为两方面的制备研究,一种是通过共掺杂磁性与非磁性材料进入SiC,通过Fe、Ni的共掺以期提高薄膜性能,对Fe、Ni共掺SiC/Cu多层膜样品的输运、结构以及磁性进行研究;另一下研究退火后多层膜的巨磁阻,分析了退火对SiC/Cu多层膜的结构、磁电阻、磁性的影响。 对于的Fe共掺杂SiC/Cu多层膜,改变其Cu层的厚度,其多层膜的周期性结构用X射线反射率谱进行了表征,多层膜单层厚度及单个周期结构均属于埃级水平。X射线光电子能谱表明了薄膜中的Cu-C、Fe-Si键,Cu元素的存在形式为单质Cu和Cu+。通过X射线吸收精细结构及其拟合结果,表明部分Fe原子进入间隙位;Cu原子以替位Si进入SiC中和Cu单质的形式存在。所有的多层膜载流子浓度通过输运测试结果表明都在1022的数量级以上,随着Cu层厚度增加,载流子浓度降低。样品的主要输运机制是Mott变成跃迁。通过态密度的计算,体系的铁磁性来源于Fe3d、Cu3d和C2p、Si2p的p-d交换作用。所有样品都具备室温铁磁性,样品的饱和磁化强度最高为8.2emu/cm3,且当Cu层厚度的增加,饱和磁化强度降低,这是由于随着Cu层厚度的增加,载流子浓度降低,体系的p-d交换作用减弱,进而使得饱和磁化强度减小。 对较低温度下真空退火处理的样品。在低于纳米Cu的第一熔点的温度进行退火,微小的SiC结晶在退火后的样品SiC层出现,原子Cu部分耦合进入了SiC层,Cu替位Si位,以一价的价态形式存在。样品主要输运机制是Mott变程跃迁,所有的SiC/Cu多层膜都为P型半导体特征,并且都具有室温铁磁性。Hall测试表明,随着Cu层厚度变大,载流子浓度Pc减小,随着退火温度的升高,饱和磁化强度Ms升高。理论计算表明体系的铁磁性仍源于载流子调节的p-d交换作用。退火后的多层膜出现了正巨磁电阻效应,磁电阻大小与多层膜的单层厚度变化有直接联系,磁电阻在30K测试温度下最高达700%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号