首页> 中文学位 >生物质基碳材料的制备及在环境与能源中的应用
【6h】

生物质基碳材料的制备及在环境与能源中的应用

代理获取

目录

声明

摘要

第一章 绪论

1.1 引言

1.2 生物质的结构特征

1.3 生物质基多孔碳的制备方法

1.4 水热碳化机理

1.5 生物质基水热碳化材料在环境与能源中的应用

1.5.1 重金属离子及有机污染物的吸附剂

1.5.2 多孔碳吸附CO2

1.5.3 多孔碳在能源材料中的应用—电极材料

1.6 选题依据与研究内容

1.6.1 论文的选题依据

1.6.2 论文的主要研究内容

参考文献

第二章 玉米秸秆基水合碳制备与吸附性能研究

2.1 引言

2.2 实验部分

2.2.1 主要原料和实验试剂

2.2.2 样品表征和实验仪器设备

2.2.3 实验方法

2.3 结果与讨论

2.3.1 液体产物中油相成分GC/MS分析

2.3.2 水合碳物理成分与结构分析

2.3.3 生成水合碳的可能反应机理

2.4 水合碳对水溶液中Cr(Ⅵ)的吸附性能

2.4.2 PH值对水合碳吸附Cr(Ⅵ)的影响

2.4.3 吸附剂用量对Cr(Ⅵ)吸附的影响

2.5 水合碳吸附Cr(Ⅵ)后的FT-IR及SEM分析

2.6 本章小结

参考文献

第三章 沙柳基水合碳的制备及吸附性能研究

3.1 引言

3.2 实验部分

3.2.1 主要原料和实验试剂

3.2.3 实验方法

3.3 结果与讨论

3.3.1 水合碳的FT-IR分析

3.3.2 水合碳的NMR分析

3.3.3 水合碳的XPS分析

3.3.4 水合碳的热重分析

3.3.5 水合碳的XRD分析

3.3.6 N2吸附-脱附分析

3.3.7 水合碳的SEM分析

3.4 水合碳吸附性能分析

3.4.1 HC-26水合碳对水溶液中苯酚的吸附性能

3.4.2 HC-26水合碳对水溶液中Ni(Ⅱ)的吸附性能

3.4.3 HC-26水合碳对水溶液中Cr(Ⅵ)的吸附性能

3.5 本章小结

参考文献

第四章 水合碳基功能化多孔碳材料的制备与CO2吸附性能研究

4.1 引言

4.2 实验部分

4.2.1 主要原料和实验试剂

4.2.2 样品表征和实验仪器设备

4.2.3 实验方法

4.3 结果与讨论

4.3.2 多孔碳的XPS分析

4.3.3 N2吸附-脱附分析

4.3.4 多孔碳的SEM分析

4.3.5 KOH活化的机理

4.5 本章小结

参考文献

第五章 石墨化碳材料的制备与电化学性能研究

5.1 引言

5.2 实验部分

5.2.1 主要原料和实验试剂

5.2.2 样品表征和实验仪器设备

5.2.3 实验方法

5.2.4 电极的制备

5.3 结果与讨论

5.3.1 XRD分析

5.3.2 SEM和TEM分析

5.3.3 N2吸附-脱附分析

5.3.4 石墨化碳的FT-IR分析

5.4 石墨化碳负载Pt纳米粒子结构与电化学性能分析

5.4.1 XRD与电镜分析

5.4.2 电化学性能分析

5.5 本章小结

参考文献

第六章 水合碳基活性碳的制备与电化学性能研究

6.1 引言

6.2 实验部分

6.2.1 主要原料和实验试剂

6.2.2 样品表征和实验仪器设备

6.2.3 实验方法

6.2.4 电极的制备

6.3 结果与讨论

6.3.1 水合碳的物理成分分析

6.3.2 水合碳N2吸附-脱附分析

6.3.3 微波水热法制备的水合碳的TG分析

6.3.4 水合碳的XRD

6.3.4 水合碳基活性碳的结构表征与分析

6.4 活性碳的电化学性能分析

6.5 本章小结

参考文献

第七章 总结与展望

7.1 总结

7.2 展望

致谢

攻读博士学位期间论文发表情况

展开▼

摘要

人类文明的高速发展为全球能源危机、生态环境恶化和水资源溃乏带来了极大挑战。目前,近一半的能源由于能量转换和存储效率低而被浪费,水污染和化石燃料燃烧排放二氧化碳引起的温室效应也对人类健康和生态系统带来了更大的威胁。具有特殊物理化学性能的碳材料在生态环境污染物治理、碳捕获和清洁能源利用中起着重要作用。但其高昂的成本、较低的产率、复杂的设备及恶劣的合成条件阻碍了它们在实际中的应用。生物质含有大量的碳元素,并具有数量大、成本低、可再生等特点而成为理想碳材料的原料。如何通过环境友好、高效清洁的工艺过程,以廉价可再生资源制备成本低、表面性质及孔结构可控的碳基材料,实现“能源”与“生态环境”友好共存,成为研究者近年来关注的焦点。
  本论文以可再生农业剩余物玉米秸秆和林业生物质沙柳为起始原料,采用成本低、简单、环保的水热碳化及功能化、石墨化和高温活化技术制备碳基材料。研究碳材料在环境与能源领域中的应用,主要包括以下几部分内容:
  1.以玉米秸杆为原料,采用水热碳化法制备水合碳材料并考察其吸附性能。在200℃水热反应条件下,系统考察了反应时间(3-44 h)对水合碳表面功能基、形貌和孔结构的影响。结果表明,玉米秸杆水热反应制备水合碳球的最佳反应时间为26 h。制备的碳材料对水溶液中Cr(Ⅵ)的吸附实验表明,26 h水合碳对水溶液中Cr(Ⅵ)去除能力最好,室温下0.1g水合碳对10 mg L-1 Cr(Ⅵ)的去除率达67%左右。
  2.以沙柳为原料,采用水热碳化法制备水合碳材料并考察其吸附性能。结果表明,以沙柳为原料制备的水合碳结构、形貌与玉米秸杆基水合碳完全不同。220℃水热反应26 h所得沙柳基水合碳(HC-26)呈现类分子筛网状结构,且随水热反应时间增长,结构越来越致密,最终形成类似海绵状结构。HC-26水合碳表面的含氧和含氮功能基的相对含量最多,BET比表面积也较大,因而有利于吸附质的扩散。HC-26水合碳对水溶液中苯酚、Ni(Ⅱ)和Cr(Ⅵ)吸附实验研究表明,该水合碳吸附水溶液中微量苯酚和Ni(Ⅱ)的效果并不理想,然而却是理想的Cr(Ⅵ)吸附剂。当pH值为1时,对Cr(Ⅵ)的去除率高达98%以上。
  3.以沙柳为原料,通过在氨水溶液中水热碳化与后期高温活化方法,制备了系列氮掺杂多孔碳材料,探索了活化温度、活化剂种类和活化剂比例对碳材料织构性质和CO2吸附性能的影响。结果表明,以ZnCl2为活化剂制备的含氮多孔碳,其孔结构主要以介孔为主,而以KOH为活化剂制备的含氮多孔碳其孔结构主要以微孔为主;活化剂KOH的比例不同,其孔隙结构存在差异。当KOH/水合碳重量比为1∶6,活化温度为900℃时,获得的多孔碳(HC-N-K-6-800)具有碳纳米管状结构,其对CO2的吸附性能也最佳。在温度为25℃、吸附压力为0-1.0 bar、吸附时间为58 min条件下,HC-N-K-6-800对CO2的饱和吸附量是110.1 mg g-1。
  4.以沙柳为原料,采用水热碳化与高温石墨化方法制备石墨化碳材料,探索了水热反应时间对碳材料石墨化程度的影响,并以石墨碳为载体负载Pt制备了Pt/石墨碳催化剂,考察了其电催化性能。结果表明,以Ni(NO3)2·6H2O为石墨化催化剂,900℃碳化沙柳基水合碳后,可以获得具有石墨化结构的碳纳米材料。碳材料的石墨化程度随水热反应时间的延长而增加。电化学研究表明,以制备的石墨碳作为电极材料,用于修饰电极可以增加其可逆性;而负载纳米粒子Pt后的石墨碳表现出较好的甲醇氧化催化活性,且对甲醇的氧化催化活性优于商业Pt/C(20%)电极。
  5.以沙柳为原料,在ZnCl2/KCl的水溶液中分别采用传统水热碳化与微波水热碳化和高温活化制备了系列活性碳。探索了水热方法、水热反应时间、活化剂ZnCl2的比例对水合碳及活性碳的织构性质和电化学性能的影响。结果表明,尽管传统水热法制备的水合碳比表面积较低,但以它为前驱体制备的活性碳比表面积却较高;而微波水热法的规律与其相反。通过调控ZnCl2比例,可以调整活性碳中微孔/介孔的孔结构。对传统水热法,当水合碳与ZnCl2的比例为1∶2时,制备的活性碳的比表面积为1021.87 m2/g,其电化学性能优于微波法。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号