首页> 中文学位 >钨极-熔化极间接电弧焊电弧行为及其特点研究
【6h】

钨极-熔化极间接电弧焊电弧行为及其特点研究

代理获取

目录

钨极-熔化极间接电弧焊电弧行为及其特点研究

ARC BEHAVIOR ANDCHARACTERISTIC OFTUNGSTEN-CONSUMABLE INDIRECTARC WELDING

摘 要

Abstract

目录

Contents

第1章 绪论

1.1 课题背景及意义

1.2 国内外研究现状

1.3 本文主要研究内容

第2章 焊接系统、实验材料及方法

2.1 钨极-熔化极间接电弧焊系统

2.2 实验材料及参数选取范围

2.3 试验方法

第3章 钨极-熔化极间接电弧焊熔滴过渡行为研究

3.1 不同外特性电源熔滴过渡行为研究

3.2 两种外特性焊接电源电弧动特性比较

3.3熔滴过渡动态过程分析

3.4本章小结

第4章 钨极-熔化极间接电弧形态研究

4.1 间接电弧焊电弧形态

4.2电源特性对电弧形态的影响

4.3电弧形态的周期性变化规律

4.4间接电弧结构

4.5钨极-熔化极间接电弧焊电弧稳定机理

4.6本章小结

第5章 钨极-熔化极间接电弧焊熔滴受力及能量传输

5.1熔滴受力分析及过渡机制

5.2熔滴过渡速度及其冲击力的计算

5.3 熔滴温度及其热焓量的计算

5.4 本章小结

第6章 钨极-熔化极间接电弧焊接头的形成过程及应用研究

6.1接头形成过程

6.2 铜焊丝在钢板表面堆焊研究

6.3 薄镀锌钢板搭接焊应用

6.4 本章小结

结 论

参考文献

攻读博士学位期间发表的学术论文

攻读博士学位期间所申请的相关专利

哈尔滨工业大学博士学位论文原创性声明

哈尔滨工业大学博士学位论文使用授权书

致 谢

个人简历

展开▼

摘要

在传统电弧焊中,电弧的两极为焊枪与工件,由于直接接受电弧热,工件的热输入难以控制,稀释率过大。在某些要求焊缝熔敷率高且母材熔化量低的情况下,由于不能满足焊接要求,使得电弧焊的应用在一定程度上受到限制。如在航空、航天领域及兵器制造业,为改善钢材的导电、导热性能和表面硬度,通常需要在钢基体表面熔覆铜合金。为防止铁铜互熔引起偏析,要求在保证高焊缝熔敷率的情况下,减少基体的熔化,形成低稀释率的堆焊接头。
  本研究提出了钨极-熔化极间接电弧焊方法,期待解决上述问题。该方法使用单电源,电源不接工件,而是使两电极分别接熔化极焊枪和钨极焊枪,两焊枪之间成一定角度,电弧在焊丝端头与钨极之间燃烧,间接电弧热主要用于焊丝熔化,不产生熔池,间接电弧力主要用于熔滴过渡,使焊丝熔化后形成熔滴过渡到工件,实施焊接。该方法能够解决在高焊缝熔敷率情况下,最大限度降低工件母材热输入的问题。通过构建钨极-熔化极间接电弧焊系统,实现了间接电弧稳定燃烧,熔滴持续过渡。为进一步研究间接电弧焊电弧行为和实际应用奠定了基础。
  以铜焊丝为例,采用高速摄像技术对间接电弧焊的熔滴过渡行为及电弧形态进行了观察,并对电信号进行了采集。通过在钢表面堆焊铜合金的工艺试验,对堆焊接头的宏观形貌和微观组织进行了观察和分析。计算了熔滴的飞行速度和对工件表面的冲击力。采用红外测温仪对熔滴的温度进行了测量并计算了熔滴的热焓量。
  结果表明:采用平外特性电源和陡降特性电源实施该方法,均能实现熔滴的持续过渡。采用平特性电源时,熔滴过渡频率随送丝速度的增加而增加;焊接电压在16-20V时熔滴过渡频率及指向性都较高。采用陡降特性电源时,随送丝速度的增加,焊丝端头平衡位置从钨极端头的侧下方、正侧方向侧上方转变。随焊接电流的增加,熔滴的过渡频率也增加。当焊接电流大于140A时,熔滴过渡从大滴转变为射滴过渡。采用上述两种外特性电源,熔滴脱离焊丝前,间接电弧已从熔滴侧面爬升至熔滴与焊丝的界面处,降低了熔滴脱离焊丝时电弧的波动。
  电弧形态总体呈倒三角形,不同外特性电源、不同参数对电弧形态变化的影响规律也不同。当焊丝端头处于钨极的侧上方时,电弧形态为 Y形;当焊丝端头处于钨极的正侧方时,为心形;当焊丝端头处于钨极的侧下方时,为笔尖形。焊接电压和电流的周期性波动引起了电弧形态的周期性变化,采用平特性电源的电弧形态波动较大,陡降特性电源的电弧形态波动较小。
  间接电弧由阴极区、阳极区和弧柱区组成,其中弧柱区的导电部分为弧芯区,不导电部分为弧焰区。电弧靠近熔化极一侧的部分为熔化极电弧区,靠近钨极一侧的部分为非熔化极电弧区,两区聚集产生倒三角电弧形态,此时电弧较亮,有利于焊丝的快速熔化。倒三角形电弧形态是磁场作用、阴极焰和阳极焰相互对冲共同作用产生的。间接电弧能够稳定燃烧是由于钨极的加入和电弧自身调节的综合作用的结果。当采用铜焊丝时,因电弧自身固有调节作用明显,使得采用陡降特性电源时电弧更加稳定。
  结合熔滴过渡行为和电弧形态分析熔滴受力情况及其过渡机制。熔滴受到重力、表面张力、电磁力、等离子流力和电弧力的综合作用。其中,在点对点电极排布方式中,电弧在熔滴侧面,很容易爬升到焊丝上,熔滴内部电磁收缩力主要集中作用于熔滴与焊丝相连的根部;熔滴长大过程中,焊丝端头从钨极的侧上方伸到钨极的正侧方,电弧力充当动力的成分增加,并对熔滴根部产生挤压作用,降低了表面张力,从而能够使熔滴顺利过渡。
  熔滴的飞行速度与电流密切相关,当焊接电流大于140A时,熔滴脱离焊丝后的飞行速度明显提高。随焊接电流的增大,冲击力先增大后减小,最后保持平稳。随焊接电流的增大,熔滴温度逐渐下降,达到1200℃后保持平稳。熔滴的热焓量较低,约为电源总输出能量的30%,熔滴未受到电弧的保温和加热作用,有效降低了工件表面的热输入。
  利用钨极-熔化极间接电弧焊方法在30CrMnSi钢表面采用CuSi3焊丝进行了堆焊试验。堆焊接头表面无明显缺陷,稀释率最低可达0.12%,有效抑制了偏析现象的发生。利用该方法不仅可用于堆焊,也可以用于薄板焊接。可以实现0.6mm厚薄镀锌钢板的搭接焊,钢板本身只发生了极少量的熔化。

著录项

  • 作者

    王军;

  • 作者单位

    哈尔滨工业大学;

  • 授予单位 哈尔滨工业大学;
  • 学科 材料加工工程
  • 授予学位 博士
  • 导师姓名 冯吉才;
  • 年度 2010
  • 页码
  • 总页数
  • 原文格式 PDF
  • 正文语种 中文
  • 中图分类 TG444.2;
  • 关键词

    钨极-熔化极; 间接电弧焊; 熔滴过渡; 电弧形态;

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号