首页> 中文学位 >镁合金板带热轧热力耦合有限元仿真分析
【6h】

镁合金板带热轧热力耦合有限元仿真分析

代理获取

目录

文摘

英文文摘

1 绪 论

2 非线性有限元的基本理论及其在Marc中的应用

3 热力耦合有限元分析基本理论

4 热轧镁合金板材有限元模型的建立

5 模拟结果与实验对比

6 工艺参数对板材的影响

7 结论与展望

致 谢

参考文献

附 录:作者在攻读硕士学位期间发表的论文

展开▼

摘要

镁合金板材在航空、航天、汽车,3C产业等领域有着广泛的应用,其制造技术已经成为当前镁合金研发的重点。镁合金板材一般采用轧制成形的方法生产。准确计算和匹配轧制过程各项工艺参数,可以提高镁合金板带的成型效率和质量。板带热轧过程中,存在着几何、材料特性、边界条件等复杂多变量非线性及相互影响的问题,给研究带来很大的困难。近年来随着计算技术以及模拟软件的日益成熟和完善,将热力耦合分析方法引入软件程序中使应用板材热轧方面问题的分析成为可能。
   镁合金板带热轧过程中,精确地计算轧件内部的温度场和应力场分布是制定轧制工艺参数的关键,而在加工过程中,温度场与应力场是互相耦合的,温度场的结果直接影响应力场计算的准确性。为了分析该过程,本文采用大型非线性有限元商用软件MSC.Marc,根据实验设备参数,建立弹塑性有限元模型。利用热力耦合分析方法,模拟了AZ31镁合金的轧制过程。研究发现:
   1.基于非线性有限元法基本原理,综合轧件在大变形过程中的应力应变规律,建立了用于描述大变形工件在参考系中位置的两类有限元方程,发现更新的拉格朗日描述方程较总的拉格朗日描述方程更具有普遍适用性,故本文中模型分析参数的设定选用更新的拉格朗日描述法。
   2.基于传热方程和大变形弹塑性理论,结合轧件轧制过程中的力平衡方程和能量平衡方程,建立了热力耦合数学模型。得出了在每个时间增量步启动时,用当前的位移增量修正域V和边界S,在时间增量步内交替间增量步内交替迭代力平衡和能量平衡的求解规律,综合比较几种求解方法得出完全的Newton-Raphson方法迭代求解最好,收敛判据则选择位移检查收敛。
   3. 根据AZ31镁合金高温变形的本构方程,使用Marc软件的接口,采用FORTRAN语言编写了流变应力子程序。得到了AZ31镁合金高温流变应力变化规律的材料模型。
   4.模拟了镁合金板带热轧过程中的轧制力和轧制力矩,与实验结果比较,验证了模型的正确性。同时发现二维模型模拟结果比三维模拟结果计算更精确,更节约大量的计算时间和计算资源。
   5.基于三维和二维模型,模拟了板带热轧过程中的温度场、变形速率、等效塑性应力场和等效塑性应变等情况,较为全面、系统地分析了这些参量沿着轧件各个方向的分布规律。温度梯度在接触面附近较大,远离接触面的区域较小。轧制变形区域内变形速率数值大小的分布与理论方程描述情况一致。等效塑性应力场沿着轧件厚度方向的分布规律与应变理论相同;沿宽度方向,中心处的应力较小,大小分布较为均匀,边部的应力情况较为复杂。沿厚度方向,等效塑性应变从表面到中心逐渐减小;沿宽度方向,从中心到边部应变逐渐增大。
   6. 研究了不同工艺参数的改变对轧制力、温度场以及宽展的影响。发现轧制力受压下率和初始温度变化的影响较为明显,轧制力随压下率增大而变大,随初始温度升高而减小。高温轧制时,不同的轧制速度对应着轧件不同变形抗力,轧制速度越大,变形抗力也越大,材料就越难以屈服,轧制力越大。轧制力随摩擦系数的变大而增大,增大的幅度较小。对于宽展,随着压下率增大,宽展量也在增大。当B1=L,B2>L时,在[B1,B2]范围内,宽展量随着板宽的增大而变小。其他条件不变的情况下,随着轧辊半径的增大,宽展量也在增大;同样随着摩擦系数的增加,宽展增加。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号