首页> 外文会议>WEFTEC 2011;Annual Water Environment Federation technical exhibition and conference >An innovative hydrologic and hydraulic modeling approach for MWRDGC’s Calumet Tunnel and Reservoir Plan (TARP) system
【24h】

An innovative hydrologic and hydraulic modeling approach for MWRDGC’s Calumet Tunnel and Reservoir Plan (TARP) system

机译:MWRDGC的Calumet隧道和水库计划(TARP)系统的创新水文和水力建模方法

获取原文

摘要

In 1972, the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) adoptedthe Tunnel and Reservoir Plan (TARP), as the Chicago area’s long-term control plan to costeffectivelycomply with Federal and State water quality standards in the 375 square-milecombined sewer area consisting of Chicago and 51 suburbs. TARP’s main goals are to protectLake Michigan - the region’s drinking water supply - from raw sewage pollution; improve waterquality of area rivers and streams; and provide an outlet for floodwaters to reduce street andbasement sewage backup flooding.The TARP system consists of 109.4 miles of deep rock bored, concrete-lined tunnels that rangein diameter from 8 feet to 33 feet and are between 150 ft and 350 ft below ground level. Acombination of stormwater and wastewater enters the system through 259 drop shafts (between 4ft and 25 ft in diameter), passing through over 600 near-surface connecting and regulatingstructures placed throughout the system. There are four main TARP systems, Upper Des Plaines(O’Hare), Des Plaines, Mainstream and Calumet. The system also includes three major pumpingstations and three large open-air reservoirs. As designed, the total combined sewer overflow(CSO) storage capacity of the tunnels and reservoirs is 17.5 billion gallons. Construction of theTARP system began in 1975 and continues today with the Thornton Reservoir due forcompletion in 2015 and Stage 1 and 2 of the McCook reservoir due in 2017 and 2029,respectively.Since the design of the TARP, no comprehensive hydrologic/hydraulic study of the system hasbeen undertaken. In 2003, MWRDGC approached the University of Illinois at UrbanaChampaign (UIUC) to develop a new, updated and enhanced computer model for each TARPsystem, to allow real-time evaluation of the TARP systems. The new real-time flow model willoptimize operation of the system as actually constructed, determine constraints in the system,identify physical changes needed to improve performance, and allow “what-if” analyses to beperformed for potential storm scenarios and facility revisions.Although simple in concept, modeling the TARP system poses challenges that cannot beresolved using any single existing modeling tool. These challenges include: the size andcomplexity of the TARP system, interceptor system and its contributing service area; lack ofdetailed hydrologic and hydraulic input data; and the propensity of the system to generatehydraulic conditions that can cause geysering to occur. UIUC has helped MWRDGC develop aset of modeling tools, which combine to form a simulation package capable of simulating thewide-range of hydrologic and hydraulic conditions that the system can be subjected to. This toolhas been used to evaluate the Calumet TARP system and is in the process of being applied to theMainstream/Des Plaines TARP system. It has allowed the District to identify how the systemwill behave once the reservoirs come online and provides them with a tool to conduct “what-if”scenario analysis that will allow them to optimize operation of the system. Through investmentin the development of technology, MWRDGC will have tools that can be used to optimize theTARP system, thereby reducing flooding and combined sewer overflows, and improving thewater quality of surrounding waterways. This paper presents the simulation package that hasbeen developed and its application to the Calumet TARP system.
机译:1972年,大芝加哥都会区(MWRDGC)通过了隧道和水库计划(TARP),作为芝加哥地区的长期控制计划,以经济有效地符合375平方英里的下水道联合地区的联邦和州水质标准。芝加哥和51个郊区。 TARP的主要目标是保护该地区的饮用水源密歇根湖免受原始污水的污染;改善该地区河流和溪流的水质; TARP系统由109.4英里深的岩石钻孔混凝土衬砌隧道组成,其直径范围从8英尺到33英尺,在地面以下150英尺至350英尺之间。雨水和废水的混合物通过259个落井(直径在4英尺至25英尺之间)进入系统,穿过整个系统中的600多个近地面连接和调节结构。 TARP主要有四个系统,即上德平原(O'Hare),德平原,主流和卡卢梅特(Calumet)。该系统还包括三个主要的泵站和三个大型露天水库。按照设计,隧道和水库的总下水道溢流(CSO)总存储容量为175亿加仑。 TARP系统的建设始于1975年,如今一直持续到2015年Thornton水库完工,McCook水库的第一和第二阶段分别于2017年和2029年完工。由于TARP的设计,因此尚未对TARP系统进行全面的水文/水力研究系统已经承担。 2003年,MWRDGC与伊利诺伊大学香槟分校(UIUC)联系,为每个TARP系统开发了一种新的,更新的和增强的计算机模型,以便可以对TARP系统进行实时评估。新的实时流量模型将优化实际构建的系统操作,确定系统中的约束条件,确定提高性能所需的物理变化,并允许针对潜在的风暴场景和设施修订执行“假设分析”。从概念上讲,对TARP系统进行建模提出了使用任何现有现有建模工具都无法解决的挑战。这些挑战包括:TARP系统,拦截器系统及其提供服务的区域的规模和复杂性;缺乏详细的水文和水力输入数据;以及系统产生液压状况的倾向,这些状况可能导致间歇泉的发生。 UIUC帮助MWRDGC开发了一套建模工具,这些工具组合起来形成了一个模拟软件包,能够模拟该系统可以承受的广泛的水文和水力条件。该工具已用于评估Calumet TARP系统,并且正在应用到Mainstream / Des Plaines TARP系统中。它使学区能够确定水库上线后系统的运行方式,并为他们提供进行“假设分析”方案分析的工具,从而使他们能够优化系统的运行。通过投资技术开发,MWRDGC将拥有可用于优化TARP系统的工具,从而减少洪水和下水道溢流,并改善周围水道的水质。本文介绍了已开发的仿真程序包及其在Calumet TARP系统中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号