首页> 外文会议>Water Environment Federation 72nd annual conference amp; exposition (WEFTEC'99) >INVERT EROSION OF LARGE DIAMETER CONCRETE SEWERS UNDER THE INFLUENCE OF SEDIMENT TRANSPORT
【24h】

INVERT EROSION OF LARGE DIAMETER CONCRETE SEWERS UNDER THE INFLUENCE OF SEDIMENT TRANSPORT

机译:输沙影响下大直径混凝土管道的反侵蚀

获取原文
获取原文并翻译 | 示例

摘要

The ever-increasing cost of sewer construction and replacement has prompted manyrnutilities to focus on protection of their existing wastewater infrastructure. More attentionrnis being directed toward protecting the original sewer capital investment as a means ofrnreducing cost. For concrete sewers, the primary focus has been on preventingrnbiogenic sulfide corrosion and protecting sewers from the ravages of the sulfuric acidrnthat is produced. This form of sewer corrosion occurs above the water line and isrnclearly visible with CCTV inspection. The consequences of corroded and deterioratedrnpipe are collapse, wastewater release, interrupted service and public relationsrnnightmares. Most utilities are aware of biogenic sulfide corrosion and many arernactively pursuing the rehabilitation and protection of susceptible pipes. The City ofrnPhoenix and other local municipalities have formed the Subregional Operating Grouprn(SROG), a wastewater collection and treatment partnership group, to providernwastewater collection and treatment for common good of the membershiprncommunities. The SROG is among the forefront of utilities which are aggressivelyrnpursuing sewer infrastructure protection.rnWhile biogenic corrosion has received the most attention as a sewer infrastructurerndestruction mechanism, another type of corrosion which is hidden from view belowrnthe water line may be slowly and systematically destroying your concrete pipes.rnInspectors have discovered the widespread occurrence of a form of sewerrndestruction that physically removes the invert of the pipe. This form of destructionrncalled "invert erosion" occurs in pipes that carry a normal bed load of sediments,rnsand, pebbles and stones at high velocity. The City of Phoenix and SROG discoveredrnthe presence of invert erosion in the large diameter (90-inch diameter) Salt RiverrnOutfall (SRO) trunk sewer during an inspection of biogenic corrosion impacts. Duringrnan unusually low flow, the inspector noticed a groove in the invert of the pipe with hisrnboot.rnThe City of Phoenix and their wastewater operating partners (SROG), immediatelyrnstarted a program to determine the presence, extent and cause of the invert erosion.rnBoth sonar and physical manned entry inspection of the sewers was performed tornidentify the severity and extent of the erosion. The manned entry was performed torn"map" a profile of the erosion artifact using a specially constructed profile tool.rnFollowing the inspection phase, an engineering study was performed to identify therncause of the pipe destruction. The study concluded that the velocity of the wastewaterrnis the critical element in the sediment erosion process. The erosion process was alsornfound to be more dependent upon wastewater velocity than the volume or mass ofrnsediment load. Depending upon the velocity of the wastewater, the sediments in thernsewer (bed load) respond differently. High wastewater velocities make the bed loadrntravel down the pipe in "single file" fashion so that the tumbling impacts from thernpebbles and stones occur in a line along the invert of the pipe. The result is creationrnof a groove in the invert of the pipe that can cut through reinforcing steel andrneventually breach the pipe.rnThe paper presents the identification, study, analysis and recommendations for thisrnunique form of sewer "corrosion" in the City of Phoenix. Calculations of the shearrnforces applied to various sediment load particles (stones, pebbles, sand) and therncalculation of wastewater velocities of concern are presented. The paper alsornpresents a profile of sewers which may be subject to this particular erosionrnphenomenon. Diameter, wastewater velocity, sediment load type, sediment loadrnsource and final recommendations for the correction of invert erosion are presented.rnThe application of the lessons learned in Phoenix are directly related to any normalrntrunk sewer flowing at velocities greater than 5 feet-per-second (fps).
机译:下水道建设和更换成本的不断上涨促使许多公用事业公司集中精力保护其现有的废水基础设施。越来越多的注意力集中在保护原始的下水道资本投资上,以降低成本。对于混凝土下水道,主要重点是防止生源硫化物腐蚀并保护下水道免受所产生的硫酸的破坏。这种形式的下水道腐蚀发生在水线以上,并且通过CCTV检查清晰可见。管道腐蚀和恶化的后果是坍塌,废水排放,服务中断和公共关系噩梦。大多数公用事业公司都知道生物硫化物的腐蚀,并且许多公司积极地进行修复和保护易损管道的工作。凤凰城和其他地方市政府成立了污水收集与处理合作伙伴关系分区域运营小组(SROG),为会员社区的共同利益提供废水收集与处理。 SROG是积极追求下水道基础设施保护的公用事业的最前沿之一。尽管作为下水道基础设施的破坏机制,生物腐蚀受到了最广泛的关注,但从水线下方看不到的另一种腐蚀类型可能会缓慢而系统地破坏您的混凝土管道。检查员发现一种形式的下水道破坏现象普遍存在,实际上可以去除管道的反面。这种被称为“反向侵蚀”的破坏形式发生在管道上,这些管道在高速下承载正常的底泥,砂砾,卵石和石头。凤凰城和SROG在对生物腐蚀影响进行检查时发现大直径(直径为90英寸)的Salt RiverrnOutfall(SRO)干渠下水道存在反向侵蚀。在异常低流量的过程中,检查人员注意到带有倒装靴的管道倒置处的沟槽。凤凰城及其废水运营伙伴(SROG)立即启动了一个程序,以确定倒置腐蚀的存在,程度和原因。对下水道进行了人工检查,以查明侵蚀的严重程度和程度。使用特殊构造的轮廓工具对有人为进入进行了撕裂,以“映射”出侵蚀物的轮廓。在检查阶段之后,进行了工程研究以识别造成管道破坏的原因。研究得出结论,废水的速度是泥沙侵蚀过程中的关键因素。还发现侵蚀过程比废水负荷的体积或质量更依赖废水速度。根据废水的速度,下水道(床负荷)中的沉积物会有不同的响应。较高的废水流速使床层负载以“单排”方式沿管道向下移动,从而使沿管道倒置成一直线的鹅卵石和石块产生的翻滚冲击。结果是在管道的反面形成了一个沟槽,该沟槽可以切穿钢筋并最终破坏管道。本文介绍了凤凰城这种下水道“腐蚀”的识别,研究,分析和建议。介绍了应用于各种沉积物负荷颗粒(石头,卵石,沙子)的剪力的计算以及所关注的废水流速的计算。本文还介绍了可能受到这种特殊侵蚀现象影响的下水道的概况。提出了直径,废水流速,沉积物负荷类型,沉积物负荷源以及纠正反侵蚀的最终建议。在Phoenix中吸取的教训的应用与流速大于5英尺/秒的任何正常的污水渠直接相关( fps)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号