【24h】

Improving the Visualization of 3D Ultrasound Data with 3D Filtering

机译:通过3D过滤改善3D超声数据的可视化

获取原文
获取原文并翻译 | 示例

摘要

3D ultrasound imaging is quickly gaining widespread clinical acceptance as a visualization tool that allows clinicians to obtain unique views not available with traditional 2D ultrasound imaging and an accurate understanding of patient anatomy. The ability to acquire, manipulate and interact with the 3D data in real time is an important feature of 3D ultrasound imaging. Volume rendering is often used to transform the 3D volume into 2D images for visualization. Unlike computed tomography (CT) and magnetic resonance imaging (MRI), volume rendering of 3D ultrasound data creates noisy images in which surfaces cannot be readily discerned due to speckles and low signal-to-noise ratio. The degrading effect of speckles is especially severe when gradient shading is performed to add depth cues to the image. Several researchers have reported that smoothing the pre-rendered volume with a 3D convolution kernel, such as 5x5x5, can significantly improve the image quality, but at the cost of decreased resolution. In this paper, we have analyzed the reasons for the improvement in image quality with 3D filtering and determined that the improvement is due to two effects. The filtering reduces speckles in the volume data, which leads to (1) more accurate gradient computation and better shading and (2) decreased noise during compositing. We have found that applying a moderate-size smoothing kernel (e.g., 7x7x7) to the volume data before gradient computation combined with some smoothing of the volume data (e.g., with a 3x3x3 lowpass filter) before compositing yielded images with good depth perception and no appreciable loss in resolution. Providing the clinician with the flexibility to control both of these effects (i.e., shading and compositing) independently could improve the visualization of the 3D ultrasound data. Introducing this flexibility into the ultrasound machine requires 3D filtering to be performed twice on the volume data, once before gradient computation and again before compositing. 3D filtering of an ultrasound volume containing millions of voxels requires a large amount of computation, and doing it twice decreases the number of frames that can be visualized per second. To address this, we have developed several techniques to make computation efficient. For example, we have used the moving average method to filter a 128x128x128 volume with a 3x3x3 boxcar kernel in 17 ms on a single MAP processor running at 400 MHz. The same methods reduced the computing time on a Pentium 4 running at 3 GHz from 110 ms to 62 ms. We believe that our proposed method can improve 3D ultrasound visualization without sacrificing resolution and incurring an excessive computing time.
机译:3D超声成像作为一种可视化工具正在迅速获得广泛的临床认可,该可视化工具使临床医生可以获得传统2D超声成像无法获得的独特视图以及对患者解剖结构的准确了解。实时获取,操纵3D数据并与之交互的能力是3D超声成像的重要特征。体积渲染通常用于将3D体积转换为2D图像以进行可视化。与计算机断层扫描(CT)和磁共振成像(MRI)不同,3D超声数据的体积渲染会生成嘈杂的图像,在这些图像中,由于斑点和低信噪比而无法轻易辨别表面。当执行渐变着色以向图像添加深度提示时,斑点的降级效果尤其严重。几位研究人员报告说,使用3D卷积核(例如5x5x5)平滑预渲染的体积可以显着改善图像质量,但以降低分辨率为代价。在本文中,我们分析了使用3D滤波改善图像质量的原因,并确定该改善是由两个因素引起的。过滤可减少体数据中的斑点,从而导致(1)更精确的梯度计算和更好的阴影效果,以及(2)减少合成期间的噪声。我们发现,在进行梯度计算之前,对体积数据应用中等大小的平滑核(例如7x7x7),并在合成之前对体积数据进行一些平滑处理(例如,使用3x3x3低通滤波器),从而得到具有良好深度感知且没有分辨率明显下降。为临床医生提供独立地控制这两种效果(即阴影和合成)的灵活性可以改善3D超声数据的可视化。将这种灵活性引入超声仪需要对体积数据执行两次3D滤波,一次是在梯度计算之前,一次是在合成之前。包含数百万个体素的超声体积的3D过滤需要大量的计算,并且执行两次将减少每秒可可视化的帧数。为了解决这个问题,我们开发了几种技术来提高计算效率。例如,我们已经使用移动平均法在一个以400 MHz运行的MAP处理器上在17 ms内用3x3x3 boxcar内核过滤了128x128x128的体积。相同的方法将运行3 GHz的Pentium 4的计算时间从110 ms减少到62 ms。我们相信,我们提出的方法可以改善3D超声的可视化效果,而不会牺牲分辨率,也不会导致过多的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号