首页> 外文会议>URSI General Assembly and Scientific Symposium >Ionosphere and plasmasphere electron density profiles
【24h】

Ionosphere and plasmasphere electron density profiles

机译:电离层和等离子层电子密度分布

获取原文

摘要

The ionosphere-plasmasphere region of Earth's environment extends from ∼60 km altitude above the surface to a geocentric distance of roughly 4 R. Radio wave propagation in this region is predominantly controlled by the electron density distribution and the geomagnetic field. Measuring and modeling the electron density profiles Ne in this near Earth plasma regime has been a challenge ever since this space plasma regime was discovered, almost one hundred years ago. Great progress has been made in specifying the Ne profiles, especially in the ionosphere, as a function of time, location, season, and solar and magnetic activity, and yet, many open questions remain. Early observations with groundbased ionosondes and partial reflection radars discovered the non-monotonic structure of the ionosphere with densities peaking at ∼90 km (D layer), ∼110 km (E layer), ∼150 km (F1 layer or ledge), and ∼300 km (F2 layer). The global network of ionosondes routinely monitors the bottomside ionosphere up to hmF2, the height of the F2 peak (http://spidr.ngdc.noaa.gov/spidr/; http://giro.uml.edu/). Rocket measurements provided the most reliable profile information on the D layer profiles, but of course only at a few places and at a few times. The most thoroughly tested ionospheric profiles are arguably given by the IRI, an empirical model that uses readily measurable characteristics like foF2, hmF2, etc. for its specification as shown in Figure 1. Beginning in the middle of the last century, satellite and incoherent scatter radar (ISR) observations extended the density measurements above the height of the F2 layer peak and into the plasmasphere. The ISRs operate on frequencies well above foF2, the maximum plasma frequency in the ionosphere, and can measure Ne up to ∼1000 km, and also electron and ion temperatures, which are important for the development of physics-based ionospheric models. From the mid-1960s to the late 1970s,- the US/Canadian Alouette and ISIS satellites carried topside sounders that measured the topside Ne profiles from the satellite altitude down to hmF2 (http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html). The currently used topside profile models are largely based on these data. The Japanese ISS-b and Ohzora satellites also carried topside sounders. Topside Ne profile data form the Russian Cosmos-1809 and Intercosmos-19 satellites are available on http://antares.izmiran.rssi.ru/ projects/IK19/. Sounders (ionosondes) provide the most reliable Ne profile information, however there are currently no topside sounders measuring the topside ionosphere. Instead, indirect techniques have been developed in recent decades that invert transionospheric radio signals from satellites into electron density profiles using tomography and radio-occultation techniques. Earth's plasmasphere is the upward extension of the low- and mid-latitude ionosphere. Also filled with cold plasma, it extends to the plasmapause located along the L≈4 shell during magnetically quiet conditions, but this boundary is highly dynamic varying from ∼2–7 R. In situ Ne measurements in the plasmasphere were made by instruments on a range of satellites, e.g., on LUNIK, OGOxx, IMP2, GEOS 1 and 2, ELECTRON 2 and 4, INTERCOSMOS, ISEE1, CLUSTER, and others. These in situ density data have been statistically analyzed to derive “average” plasmaspheric electron density distributions for different conditions and regions. In contrast to these in situ measurements, a VLF sounder on IMAGE made instantaneous measurements of entire profiles along the geomagnetic field line passing through the satellite. 2-D density distributions from L=1.5 to L=4 are obtained within ∼20 min of observation (Figure 2).
机译:地球环境的电离层-等离子层区域从地面上方约60 km的高度延伸到大约4 R的地心距离。该区域中的无线电波传播主要受电子密度分布和地磁场的控制。自从大约一百年前发现这种空间等离子体以来,在这种近地等离子体状态下对电子密度分布Ne进行测量和建模一直是一个挑战。在根据时间,位置,季节,太阳和磁活动确定Ne剖面,特别是在电离层中的Ne剖面方面,已经取得了很大的进步,但仍然存在许多悬而未决的问题。早期对地面电离超声探空仪和部分反射雷达的观测发现了电离层的非单调结构,其密度在〜90 km(D层),〜110 km(E层),〜150 km(F1层或壁架)和〜 300公里(F2层)。电离探空仪的全球网络通常会监视直到hmF2(F2峰的高度)的底部电离层(http://spidr.ngdc.noaa.gov/spidr/;http://giro.uml.edu/)。火箭测量提供了有关D层剖面的最可靠的剖面信息,但当然仅在几个地方和几次。经过最彻底测试的电离层剖面可以由IRI给出,IRI是一种经验模型,其使用诸如foF2,hmF2等易于测量的特征为其规格,如图1所示。从上世纪中叶开始,卫星和不相干散射雷达(ISR)观测将密度测量值扩展到了F2层峰的高度上方,并进入了等离子层。 ISR的工作频率远高于foF2(电离层中的最大等离子体频率),并且可以测量高达约1000 km的Ne以及电子和离子温度,这对于基于物理学的电离层模型的开发非常重要。从1960年代中期到1970年代后期,美国/加拿大Alouette和ISIS卫星搭载了顶部测深仪,该测深仪测量了从卫星高度到hmF2的顶部Ne剖面(http://nssdc.gsfc.nasa.gov/space/ isis / isis-status.html)。当前使用的顶面轮廓模型主要基于这些数据。日本的ISS-b和Ohzora卫星也搭载了顶部探测仪。可从http://antares.izmiran.rssi.ru/ projects / IK19 /获得来自俄罗斯Cosmos-1809和Intercosmos-19卫星的Topside Ne轮廓数据。测深仪(电离探空仪)提供最可靠的Ne剖面信息,但是目前尚没有测量顶侧电离层的顶测仪。取而代之的是,近几十年来开发了间接技术,该技术使用层析成像和无线电掩星技术将来自卫星的电离层无线电信号转换为电子密度分布图。地球的等离子层是低纬度和中纬度电离层的向上延伸。它也充满了冷等离子体,在电磁静噪条件下延伸到沿L≈4壳的等离子体暂停,但该边界是动态变化的,范围从约2-7 R不等。卫星范围,例如LUNIK,OGOxx,IMP2,GEOS 1和2,电子2和4,INTERCOSMOS,ISEE1,CLUSTER等。对这些原位密度数据进行了统计分析,得出了不同条件和区域的“平均”等离子层电子密度分布。与这些原位测量相反,IMAGE上的VLF测深仪对穿过卫星的地磁场线上的整个剖面进行了瞬时测量。在约20分钟的观察时间内获得了从L = 1.5到L = 4的二维密度分布(图2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号