首页> 外文会议>Three-dimensional and multidimensional microscopy: image acquisition and processing XXI >Numerical Spherical Aberration Correction Method using Spatial Light Modulator under Deep-Part Fluorescence Observation
【24h】

Numerical Spherical Aberration Correction Method using Spatial Light Modulator under Deep-Part Fluorescence Observation

机译:深部荧光观测下使用空间光调制器的数值球差校正方法

获取原文
获取原文并翻译 | 示例

摘要

We have developed a confocal fluorescence laser scanning microscopy (CFLSM) incorporating a liquid crystal on silicon spatial light modulator (LCOS-SLM). To achieve high-resolution and high-contrast imaging for deeper part of the tissue with CFLSM, high numerical aperture objective lenses are required to tightly focus excitation light to meet Rayleigh limit(criterion) for the specimens. However, mismatch of refractive index at the boundary of interfacing materials, such as atmosphere, glass cover, and biological tissues, causes spherical aberration. Recently, we proposed a numerical method for correcting spherical aberration. In this method a pre-distorted wavefront pattern for aberration correction is calculated by ray tracing from a hypothetical focal point inside a specimen to the pupil plane. The resulting microscope can correct such spherical aberration. We observed 6.0μm fluorescent micro-beads dispersed three-dimensionally in agarose gel to confirm effectiveness of aberration correction. We reconstructed a three-dimensional image by taking 20 images by changing the depth with 1 μm interval and stacking them. It was apparent that the longitudinal/depth resolution was improved and that the intensity of fluorescence image was increased with aberration correction. While this method is applicable to other laser scanning microscopes, it has potential to enhance the signals for various super-resolution microscopic techniques, such as stimulated- emission-depletion (STED) fluorescence microscopy.
机译:我们已经开发出一种共聚焦荧光激光扫描显微镜(CFLSM),它结合了硅空间光调制器(LCOS-SLM)上的液晶。为了用CFLSM对组织的较深部分实现高分辨率和高对比度成像,需要使用高数值孔径的物镜来紧密聚焦激发光,以满足样本的瑞利极限(标准)。但是,在界面材料(例如大气,玻璃盖和生物组织)的边界处的折射率不匹配会导致球差。最近,我们提出了一种校正球面像差的数值方法。在这种方法中,通过从样本内部的假设焦点到光瞳平面的光线追踪,计算出用于像差校正的预失真波前图案。所得的显微镜可以校正这种球差。我们观察到6.0μm荧光微珠三维地分散在琼脂糖凝胶中,以确认像差校正的有效性。我们通过以1μm的间隔更改深度并将其堆叠来拍摄20张图像,从而重建了三维图像。显然,通过像差校正,改善了纵向/深度分辨率,并且增加了荧光图像的强度。尽管此方法适用于其他激光扫描显微镜,但它有潜力增强各种超分辨率显微镜技术(例如受激发射损耗(STED)荧光显微镜)的信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号