首页> 外文会议>Thirty-Second annual International Pittsburgh Coal Conference >DEVELOPMENT AND APPLICATION OF A NEW STRUCTURE BASED VISCOSITY MODEL FOR OXIDE MELTS RELEVANT TO FUEL SLAGS
【24h】

DEVELOPMENT AND APPLICATION OF A NEW STRUCTURE BASED VISCOSITY MODEL FOR OXIDE MELTS RELEVANT TO FUEL SLAGS

机译:基于结构的新型与熔渣相关的氧化物熔体粘度模型的开发与应用

获取原文
获取原文并翻译 | 示例

摘要

IGCC power plants have high efficiency and represent a good opportunity to control the CO_2 emissions produced from the use of fossil fuels such as coal. The core of an IGCC power plant is the gasifier, in which slag viscosity as a function of temperature and composition plays a significant role in determining the optimum operating conditions. Many processes during gasification are related to the slag viscosity, such as particle sticking (or droplet sticking), slag flow and slag tapping. However, most of the previous viscosity models are only valid in a limited range of temperatures and compositions resulting from the lack of an effective description of the structural dependence of the viscosity. In this study, a structure based model has been developed for the fully liquid system SiO_2–Al_2O_3–CaO–MgO–Na_2O–K2O–FeO–Fe_2O_3 and its subsystems in the Newtonian range, based on the thermodynamic modified associate species model. To obtain an effective structural dependence of the viscosity, it is linked to the associate species distribution and the connectivity of associate species. Using this principle, both the temperature- and composition-induced structural changes of oxide melts can be described by a set of monomeric associate species in combination with the critical clusters induced by self- and inter-polymerization. With the new model, one of the challenges of the viscosity behavior in SiO_2-based binary systems, the so-called lubricant effect, is well described. The viscosity behavior when substituting one network modifier for another at constant SiO_2 content is also well described. The Al_2O_3-induced viscosity maximum is also described, in which the position and magnitude of the viscosity maximum as a function of temperature and composition (charge compensation effect) are properly predicted. The new model is self-consistent and gives a reliable prediction over the whole range of compositions and a broad range of temperatures using only one set of model parameters, which all have a clear physico-chemical meaning. In addition, the iso-viscosity lines and 3-dimensional viscosity surfaces are generated and further applied to determine the effects of coal ash fluxing and blending.
机译:IGCC发电厂效率高,是控制使用煤等化石燃料产生的CO_2排放的良好机会。 IGCC发电厂的核心是气化炉,其中炉渣粘度随温度和成分的变化在确定最佳运行条件方面起着重要作用。气化过程中的许多过程都与炉渣粘度有关,例如颗粒粘附(或液滴粘附),炉渣流动和炉渣排出。然而,由于缺乏对粘度的结构依赖性的有效描述,导致大多数先前的粘度模型仅在有限的温度和组成范围内有效。在这项研究中,基于热力学修正的缔合物种模型,已经为牛顿范围内的全液态体系SiO_2–Al_2O_3–CaO–MgO–Na_2O–K2O–FeO–Fe_2O_3及其子系统开发了基于结构的模型。为了获得有效的粘度结构依赖性,它与缔合物种分布和缔合物种的连通性有关。使用这一原理,可以通过一组单体缔合物种与自聚合和互聚合引发的关键簇的组合来描述温度和成分引起的氧化物熔体的结构变化。使用新模型,可以很好地描述SiO_2基二元体系中粘度行为的挑战之一,即所谓的润滑效应。还很好地描述了在恒定的SiO_2含量下用一种网络改性剂替代另一种网络改性剂时的粘度行为。还描述了由Al_2O_3引起的最大粘度,其中适当地预测了最大粘度的位置和大小随温度和组成的变化(电荷补偿效应)。新模型是自洽的,仅使用一组模型参数就可以在整个成分范围和广泛的温度范围内提供可靠的预测,而这些参数都具有明确的理化意义。另外,生成等粘度线和三维粘度表面,并将其进一步应用于确定粉煤灰通量和混合的影响。

著录项

  • 来源
  • 会议地点 Pittsburgh PA(US)
  • 作者单位

    Institute of Energy and Climate Research (IEK–2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52425 Jülich, Germany. Phone: +49–2461–61–5095, Fax: +49–2461–61–3699, E-mail: g.wu@fz-juelich.de;

    Institute of Energy and Climate Research (IEK–2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52425 Jülich, Germany. Phone: +49–2461–61–5095, Fax: +49–2461–61–3699, E-mail: s.seebold@fz-juelich.de;

    Institute of Energy and Climate Research (IEK–2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52425 Jülich, Germany. Phone: +49–2461–61–3713, Fax: +49–2461–61–3699, E-mail: e.yazhenskikh@fz-juelich.de;

    GTT Technologies, Kaiserstraße 100, 52134 Herzogenrath, Germany. Phone: +49–24–07–59533, Fax: +49–24–07–59661, E-mail: kh@gtt-technologies.de;

    Institute of Energy and Climate Research (IEK–2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52425 Jülich, Germany. Phone: +49–2461–61–6812, Fax: +49–2461–61–3699, E-mail: mic.mueller@fz-juelich.de;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号