首页> 外文会议>Technology to energize the next millennium >Application of Surface Modification Agent in Wells with High Flow Rates
【24h】

Application of Surface Modification Agent in Wells with High Flow Rates

机译:表面改性剂在高流量井中的应用

获取原文
获取原文并翻译 | 示例

摘要

Proppant coated with conventional surface-modification agentsrn(SMA?s) enhances fracture conductivity by reducing flowback inrnwells with moderate flow conditions. However, SMA cannotrnwithstand the harsh flowback conditions associated with high fluidrnflow rates. An enhanced SMA (ESMA) increases the ability of thernproppant pack to withstand critical flow velocity by 10- to 20-fold.rnIn many areas, proppant flowback occurs after fracturestimulationrntreatments are performed. In some cases, fracturesrncan produce as much as half of the proppant placed during therntreatment. Produced proppant can abrade and foul equipment,rncausing service and disposal problems. It can also extend costlyrnwell-cleanup time. However, the most significant problem associatedrnwith proppant flowback is reduced fracture conductivity,rnwhich reduces potential well production.rnResearch has identified the following mechanisms that influencernproppant flowback:rn? Angle of Repose. When poured onto a flat surface, granularrnmaterial forms a conical pile. The sides of this pile form arnspecific angle with respect to the horizontal plane. Proppantrntends to produce from a packed fracture until this angle isrnestablished to the lowest perforation.rn? Erosion. Fluid flowing along the surface of the proppantrnpack can cause erosion. Theoretically, proppant will continuernto erode until it bridges against an obstruction.rn? Closure Stress. Proppant flowback cannot be entirely preventedrnwith formation closure on the proppant pack.rn? Embedment and Extrusion. When a fracture closes withrnsufficient force, and the formation surface is relatively soft,rnproppant grains can become embedded in the formation face.rnEmbedment tends to stabilize the proppant pack.rn? Proppant Size, Distribution, Angularity, and Roughness.rnAs proppant uniformity increases, pack stability decreases.rnHowever, flowback decreases when proppant angularityrnand roughness increase.rn? Mechanical Binders. Fibrous materials included withrnproppant can enhance bridging. However, this stabilizationrntechnique tends to reduce proppant-pack permeability.rn? Cohesive Forces. Increased cohesion between proppant grainsrnhelps reduce flowback by causing the grains to interlock.rnSMA, a liquid additive applied during the fracture treatment,rncan also be used to influence proppant flowback. This material isrnwater- and oil-insoluble, and it will not harden under reservoirrnconditions. It leaves proppant grains tacky, increasing their cohesiveness.rnSMA-coated proppant enhances fracture conductivityrnby increasing pack porosity and permeability up to 30%. The tackyrnsurfaces of the proppant stabilize fines generated during thernfracture treatment. They also stabilize the pack/formation-facerninterface, creating a flexible proppant bed that can withstandrnsurging flow conditions. However, sufficiently high flow rates willrncause SMA-coated proppant to flow.rnThe ESMA system consists of a slow-acting chemicalrncrosslinker added to conventional SMA. ESMA increases therncritical fluid velocity required to erode the proppant, but it leavesrnthe proppant grains tacky enough to retain cohesiveness.rnIn the Mesaverde field, proppant flowback is a commonrnproblem, and cleanup operations can take up to 1 week. However,rnwhen fractured with ESMA-coated proppant, these wellsrnexhibit no flowback, reduced cleanup times, and the best productionrnin the field.rnWhile SMA-coated proppant can significantly reducernflowback under moderate flow conditions, ESMA-coatedrnproppant can inhibit flowback under the harsh flow conditions ofrnlimited-entry wells. ESMA-coated proppant exhibits littlernflowback during cleanup and no flowback during well production.rnIn addition, production profiles indicate that ESMA-coatedrnproppant increases cumulative well production.
机译:涂有常规表面改性剂(SMA?s)的支撑剂可通过减少适度流动条件下的反流井口来增强裂缝导流能力。但是,SMA无法承受与高流体流速相关的恶劣回流条件。增强的SMA(ESMA)使支撑剂填料承受临界流速的能力提高了10到20倍。在许多地区,在进行裂缝刺激处理后,支撑剂会回流。在某些情况下,裂缝可能产生多达在治疗过程中放置​​的支撑剂的一半。产生的支撑剂可能会磨损和污染设备,造成服务和处置问题。它还可以延长昂贵的清理时间。然而,与支撑剂返排相关的最重要问题是裂缝导流能力降低,这会降低潜在的油井产量。研究发现了以下影响支撑剂返排的机理:休止角。当倒在平坦表面上时,粒状材料会形成圆锥形桩。该桩的侧面相对于水平面形成特定角度。从填充的裂缝中产生支撑,直到将这个角度确定到最低的射孔为止。侵蚀。沿支撑剂填料表面流动的流体会引起腐蚀。从理论上讲,支撑剂将继续腐蚀直至与障碍物搭桥。关闭应力。支撑剂包装上的地层封闭不能完全防止支撑剂回流。嵌入和挤出。当裂缝用足够的力闭合时,地层表面相对较软,支撑剂颗粒会埋入地层中。嵌入会稳定支撑剂。支撑剂的尺寸,分布,角度和粗糙度。rn随着支撑剂均匀性的增加,填充稳定性降低。rn但是,当支撑剂的角度和粗糙度增加时,回流会减少。机械粘合剂。支撑剂包含的纤维材料可以增强桥接。但是,这种稳定技术往往会降低支撑剂充填层的渗透性。内聚力。支撑剂颗粒之间的内聚力增强,通过使颗粒互锁而有助于减少回流。rnSMA(在压裂处理过程中使用的液态添加剂)也可用于影响支撑剂回流。该物质是水和油不溶的,在储层条件下不会硬化。它使支撑剂颗粒发粘,增加了它们的内聚力。SMA包覆的支撑剂可通过将填料孔隙率和渗透率提高至30%来提高裂缝传导率。支撑剂的粘性表面使在破裂处理过程中产生的细粉稳定。它们还可以稳定包装/成型面界面,从而形成可承受流动条件的灵活支撑剂床。然而,足够高的流速将导致涂覆SMA的支撑剂流动。ESMA系统由添加到常规SMA中的慢效化学交联剂组成。 ESMA会增加侵蚀支撑剂所需的临界流体速度,但会留下足够粘稠的支撑剂颗粒,以保持内聚力。在Mesaverde油田,支撑剂回流是一个常见的问题,清理操作可能需要长达1周的时间。但是,当用ESMA涂层支撑剂压裂时,这些井不会出现返排现象,减少了清理时间,并在现场达到了最佳产量。rn尽管SMA涂层支撑剂可以在中等流量条件下显着减少返排,但是ESMA涂层支撑剂可以在恶劣的流动条件下抑制返排无限进入井。 ESMA涂层支撑剂在清理期间几乎没有返排,而在井生产期间没有返排。此外,生产资料表明,ESMA涂层支撑剂可以增加井的累计产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号