【24h】

Atomic Assembly of Giant Magnetoresistive Multilayers

机译:巨磁阻多层的原子组装

获取原文
获取原文并翻译 | 示例

摘要

The emergence of metal multilayers that exhibit giant magnetoresistance (GMR) has led to new magnetic field sensors, and approaches for nonvolatile random access memories. Controlling the atomic scale structure across the many interfaces within these multilayers is central to improve the performance of these devices. However, the ability to manipulate atomic arrangements at this scale requires an understanding of the mechanisms that control heterometal film growth during vapor deposition. It is important to develop methods that enable prediction of the effects of deposition conditions upon this structure. Atomistic simulation approaches have been combined with deposition reactor models to achieve this. We have applied these approaches to analyze the atomic scale structure of sputter deposited CoFe/Cu/CoFe giant magnetoresistive multilayers similar to those used for magnetic field sensing. Significant intermixing is revealed at the CoFe-on-Cu interface, but not at the Cu-on-CoFe interface. Recent experiments verified these predictions. The insights provide a basis for the development of processes that inhibit thermally activated atomic diffusion while allowing the controlled use of the metal atom impact energy and inert gas ions to manipulate the structure of interfaces.
机译:具有巨大磁阻(GMR)的金属多层的出现导致了新的磁场传感器以及非易失性随机存取存储器的应用。控制这些多层中许多界面的原子尺度结构对于提高这些设备的性能至关重要。但是,以这种规模操作原子排列的能力需要了解在气相沉积过程中控制异金属膜生长的机制。重要的是开发能够预测沉积条件对该结构影响的方法。原子模拟方法已与沉积反应器模型相结合以实现此目的。我们已经应用这些方法来分析溅射沉积的CoFe / Cu / CoFe巨型磁阻多层的原子尺度结构,类似于用于磁场感应的那些。在CoFe-on-Cu界面处发现了显着的混合,但在Cu-on-CoFe界面处没有发现显着的混合。最近的实验证实了这些预测。这些见解为开发可抑制热活化原子扩散同时允许对金属原子撞击能量和惰性气体离子的可控使用以操纵界面结构的过程的开发提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号