首页> 外文会议>Symposium on Materials and Technology for Hydrogen Economy; 20031201-20031203; Boston,MA; US >HYDROGEN STORAGE PROPERTIES OF MAGNESIUM BASED NANOSTRUCTURED/AMORPHOUS COMPOSITE MATERIALS
【24h】

HYDROGEN STORAGE PROPERTIES OF MAGNESIUM BASED NANOSTRUCTURED/AMORPHOUS COMPOSITE MATERIALS

机译:镁基纳米结构/非晶复合材料的储氢性能

获取原文
获取原文并翻译 | 示例

摘要

In this work, nanostructured composite materials Mg-Ni, Mg-Ni-La, Mg-Ni-Ce and Mg-LaNi_5 have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), TEM, SEM and EDS for their phase compositions, crystal structure, grain size, particle morphology and the distribution of the catalyst elements. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. The results show that amorphousanostructured composite material Mg50%-Ni50% absorbs 5.89wt% within five minutes and desorbs 4.46% hydrogen within 50 minutes at 250℃ respectively. Adding 5% La into Mg-Ni composite materials reduces the starting temperature of hydrogen absorption and desorption from 200℃ to 25℃ which suggests the formation of unstable hydrides. The composite material Mg80%-LaNi_5 20% absorbs 1.96% hydrogen and releases 1.75 wt% hydrogen at 25℃. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH_2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.
机译:在这项工作中,使用机械合金化工艺合成了纳米结构复合材料Mg-Ni,Mg-Ni-La,Mg-Ni-Ce和Mg-LaNi_5。通过X射线衍射(XRD),TEM,SEM和EDS对产生的新材料进行了相组成,晶体结构,晶粒尺寸,颗粒形态和催化剂元素分布的研究。已经使用Sieverts设备在不同温度下测量了新材料的储氢能力和氢化脱水动力学。结果表明,在250℃下,非晶/纳米结构复合材料Mg50%-Ni50%在5分钟内吸收5.89wt%,在50分钟内吸收4.46%wt的氢。在Mg-Ni复合材料中添加5%La会使氢的吸收和解吸起始温度从200℃降至25℃,这表明形成了不稳定的氢化物。复合材料Mg80%-LaNi_5 20%在25℃下吸收1.96%的氢并释放1.75%的氢。观察到机械合金化在低温下加速了镁基材料的氢化动力学,但是必须提供高温以从氢化的镁基材料中释放吸收的氢。据信,脱水温度主要由氢化镁的热力学构型控制。镧掺杂Mg-Ni纳米/非晶态复合材料可降低氢化和脱水温度。尽管仅通过球磨无法轻易降低MgH_2的稳定性,但结果表明Mg-Ni纳米/非晶态复合材料的热力学性质可以通过添加诸如La或其他有效元素来替代。进一步研究以了解添加剂的机理将是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号