首页> 外文会议>Symposium on Dynamics in Small Confining Systems Ⅴ Nov 27-30, 2000, Boston Massachusetts, U.S.A. >Probing dynamics of water molecules in mesoscopic disordered media by NMR dispersion and 3D simulations in reconstructed confined geometries
【24h】

Probing dynamics of water molecules in mesoscopic disordered media by NMR dispersion and 3D simulations in reconstructed confined geometries

机译:在重构受限几何中通过NMR分散和3D模拟探测介观无序介质中水分子的动力学

获取原文
获取原文并翻译 | 示例

摘要

Disordered mesoporous materials with pore sizes ranging from 2 nm to some 10 nm develop large specific surface areas. These matrices can be easily filled with polar fluids And the interfacial region between the solid matrix and the pore network strongly influences the molecular dynamics of the entrapped fluid. A promising way to probe such a coupling on a large time-scale is to look at the dispersion of the nuclear spin-lattice relaxation rate of the polar liquid using field cycling NMR relaxometry technique. We have performed such an experiment on a fully hydrated porous Vycor glass, free of electron paramagnetic impurities. The proton nuclear magnetic relaxation rate (1/T_1) exhibits a logarithmic dependence on Larmor frequency over the range from 0.01 to 30 MHz. A cross-over is observed below 0.1 MHz. In order to understand the relationship between geometric disorder, interfacial confinement, and nuclear magnetic relaxationdispersion (NMRD), we first compute an off-lattice reconstruction of the Vycor glass This model agrees with available experimental data (specific surface, porosity, chord length distributions, small angle scattering and tortuosity). A Brownian dynamics simulation is performed to analyze long time molecular self-diffusion and NMRD data. These later are well reproduced and appear to be connected with the translation diffusion of water near the SiO_2 interface. The logarithmic character of the NMRD is specifically related to the interfacial geometry of the Vycor glass. Several other multiconnected interfacial structures such as periodic minimal surfaces do not exhibit such an evolution. Therefore, NMRD appears to be selectively sensitive to the interfacial geometry of mesoscopic disordered materials (MDM).
机译:孔径范围从2 nm到大约10 nm的无序介孔材料会形成较大的比表面积。这些基质可以很容易地被极性流体填充,并且固体基质和孔隙网络之间的界面区域会强烈影响截留流体的分子动力学。在大尺度上探测这种耦合的一种有前途的方法是使用场循环NMR弛豫技术研究极性液体的核自旋晶格弛豫速率的分散。我们已经在完全水合的多孔Vycor玻璃上进行了这样的实验,该玻璃没有电子顺磁性杂质。质子核磁弛豫率(1 / T_1)在0.01至30 MHz范围内对拉莫尔频率表现出对数依赖性。在0.1 MHz以下观察到交叉。为了了解几何无序,界面限制和核磁弛豫弥散(NMRD)之间的关系,我们首先计算Vycor玻璃的非晶格重构。该模型与可用的实验数据(比表面积,孔隙率,弦长分布,小角度散射和曲折)。进行了布朗动力学仿真,以分析长时间的分子自扩散和NMRD数据。这些后来被很好地复制,并且似乎与水在SiO_2界面附近的平移扩散有关。 NMRD的对数特性与Vycor玻璃的界面几何形状特别相关。几个其他的多连接界面结构(例如周期性的最小表面)没有表现出这种变化。因此,NMRD似乎对介观无序材料(MDM)的界面几何形状选择性敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号