首页> 外文会议>String Processing and Information Retrieval; Lecture Notes in Computer Science; 4209 >Matrix Tightness: A Linear-Algebraic Framework for Sorting by Transpositions
【24h】

Matrix Tightness: A Linear-Algebraic Framework for Sorting by Transpositions

机译:矩阵紧密度:用于按换位排序的线性代数框架

获取原文
获取原文并翻译 | 示例

摘要

We study the problems of sorting signed permutations by reversals (SBR) and sorting unsigned permutations by transpositions (SBT), which are central problems in computational molecular biology. While a polynomial-time solution for SBR is known, the computational complexity of SBT has been open for more than a decade and is considered a major open problem. In the first efficient solution of SBR, Hannenhalli and Pevzner [HP99] used a graph-theoretic model for representing permutations, called the interleaving graph. This model was crucial to their solution. Here, we define a new model for SBT, which is analogous to the interleaving graph. Our model has some desirable properties that were lacking in earlier models for SBT. These properties make it extremely useful for studying SBT. Using this model, we give a linear-algebraic framework in which SBT can be studied. Specifically, for matrices over any algebraic ring, we define a class of matrices called tight matrices. We show that an efficient algorithm which recognizes tight matrices over a certain ring, M, implies an efficient algorithm that solves SBT on an important class of permutations, called simple permutations. Such an algorithm is likely to lead to an efficient algorithm for SBT that works on all permutations.rnThe problem of recognizing tight matrices is also a generalization of SBR and of a large class of other "sorting by rearrangements" problems, and seems interesting in its own right as. We give an efficient algorithm for recognizing tight symmetric matrices over any field of characteristic 2. We leave as an open problem to find an efficient algorithm for recognizing tight matrices over the ring M.
机译:我们研究了通过逆序(SBR)排序有符号排列和通过转位(SBT)排序无符号排列的问题,这是计算分子生物学中的核心问题。尽管已知SBR的多项式时间解,但SBT的计算复杂性已经开放了十多年,被认为是一个主要的开放问题。在SBR的第一个有效解决方案中,Hannenhalli和Pevzner [HP99]使用图论模型表示置换,称为交织图。该模型对于他们的解决方案至关重要。在这里,我们为SBT定义了一个新模型,类似于交织图。我们的模型具有一些SBT早期模型所缺少的理想属性。这些特性使其对于研究SBT极为有用。使用该模型,我们给出了可以研究SBT的线性代数框架。具体来说,对于任何代数环上的矩阵,我们定义了一类称为紧密矩阵的矩阵。我们展示了一种有效算法,该算法可以识别特定环M上的紧矩阵,这意味着一种有效算法可以解决重要类别的排列(称为简单排列)上的SBT。这样的算法很可能会导致适用于所有排列的SBT有效算法。rn识别紧矩阵的问题也是SBR和其他大类“按重排排序”问题的推广,在其上似乎很有趣作为自己的权利。我们给出了一种在特征2的任何域上识别紧对称矩阵的有效算法。作为一个待解决的问题,我们找到了一种在环M上识别紧矩阵的有效算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号