首页> 外文会议>SPE Asia Pacific oil and gas conference and exhibition (2004 APOGCE) >Obtaining Formation Water Chemistry Using a Mud Tracer and Formation Tester in a North Sea Subsea Field Development
【24h】

Obtaining Formation Water Chemistry Using a Mud Tracer and Formation Tester in a North Sea Subsea Field Development

机译:在北海海底油田开发中使用泥浆示踪剂和地层测试仪获得地层水化学

获取原文
获取原文并翻译 | 示例

摘要

Precipitation from and corrosion by formation water coproducedrnwith target hydrocarbons can cause seriousrnproblems, and an early knowledge of water chemistry isrnimportant for completion and facilities design. Owing to thernhigh cost of interventions, this knowledge is particularlyrnimportant in deepwater developments and subsea completions.rnSamples of formation water are obtained by producingrnfrom the well completed in the water leg or sampling afterrnwater production occurs naturally. The former method carriesrnsignificant cost and the latter method may delay thernknowledge of the water chemistry.rnAlternatively, a formation tester can be run into thernwellbore to collect small samples directly from the formation..rnIn wells drilled with water-based mud, the results are generallyrnmixed because successful collection of formation waterrnrequires that the tool be able to discriminate between the waterrnand invaded filtrate. The method depends on the contrast inrncolor or resistivity between formation water and water-basedrnmud filtrate to determine when it is collecting water, and thisrncontrast often doesn't exist.rnThis paper presents a new solution. A mud tracer was usedrnto change the optical properties of the mud filtrate to make itrndetectable downhole. Laboratory experiments checked therncompatibility of the tracer with gypsum or glycol mud system,rnsensitivity to high clay content, and ability to be detected withrnanother tracer, and individually and in combination with arndark-colored filtrate. Shop experiments were carried out tornestablish a relationship between different tracer concentrationsrnand optical properties at specific wavelengths. Thisrnrelationship represents the basis of tracer detection andrncontamination prediction in real time downhole.rnThe first trial was carried in the Otter field in the northernrnNorth Sea. The field comprises three producers and tworninjectors with subsea completions. Downhole water samplesrnwere obtained during the logging phase on one of the injectorsrnat an early stage of the field development. Sample quality andrnflushing time were optimized using the new technique. Samplernanalysis results compared well with later production tests.
机译:与目标碳氢化合物共同产生的地层水的沉淀和腐蚀会引起严重的问题,因此对水化学的早期了解对于完井和设施设计很重要。由于干预成本高昂,因此这一知识在深水开发和海底完井中尤为重要。地层水的样品是通过从完水段完井的井中开采或自然采出的水取样而获得的。前一种方法成本较高,而后一种方法可能会延迟水化学知识。或者,可以将地层测试仪插入井眼中以直接从地层中收集少量样品。.rn在用水基泥浆钻井的井中,通常将结果混合在一起因为成功收集地层水需要工具能够区分水和侵入的滤液。该方法取决于地层水与水基泥浆滤液之间的对比色或电阻率来确定何时收集水,而且这种对比通常不存在。本文提出了一种新的解决方案。使用泥浆示踪剂来改变泥浆滤液的光学性质,使其在井下可被检测到。实验室实验检查了示踪剂与石膏或乙二醇泥浆体系的相容性,对高粘土含量的敏感性,以及用其他示踪剂(单独和与阿纳德克色滤液组合)检测的能力。进行车间实验以建立不同示踪剂浓度与特定波长下的光学性质之间的关系。这种关系代表了实时井下示踪剂检测和污染预测的基础。第一次试验是在北海北部的Otter油田进行的。该油田由三个生产商和两个注入器组成,并具有海底完井技术。在油田开发的早期阶段,在一个测井仪上的测井阶段获得了井下水样。使用新技术优化了样品质量和冲洗时间。样品分析结果与以后的生产测试进行了很好的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号