首页> 外文会议>SPE annual technical conference and exhibition;SPE2001 >Oil-Water Separation in Liquid-Liquid Hydrocyclones (LLHC) –Experiment and Modeling
【24h】

Oil-Water Separation in Liquid-Liquid Hydrocyclones (LLHC) –Experiment and Modeling

机译:液态水力旋流器中的油水分离实验与建模

获取原文

摘要

The liquid-liquid Hydrocyclone (LLHC) has been widely usedby the Petroleum Industry for the past several decades. Alarge quantity of information on the LLHC available in theliterature includes experimental data, computational fluiddynamic simulations and field applications. The design ofLLHCs has been based in the past mainly on empiricalexperience. However, no simple and overall designmechanistic model has been developed to date for the LLHC.The objective of this study is to develop a mechanistic modelfor the de-oiling LLHCs, and test it against available and newexperimental data. This model will enable the prediction ofthe hydrodynamic flow behavior in the LLHC, providing adesign tool for LLHC field applications.A simple mechanistic model is developed for the LLHC.The required input for the model is: LLHC geometry, fluidproperties, inlet droplet size distribution and operationalconditions. The model is capable of predicting the LLHChydrodynamic flow field, namely, the axial, tangential andradial velocity distributions of the continuous-phase. Theseparation efficiency and migration probability are determinedbased on swirl intensity prediction and droplet trajectoryanalysis. The flow capacity, namely, the inlet-to-underflowpressure drop is predicted utilizing an energy balance analysis.An extensive experimental program has been conductedduring this study, utilizing a 2” MQ Hydroswirl hydrocyclone.The inlet flow conditions are: total flow rates between 27 to18 gpm, oil-cut up to 10%, median droplet size distributionsfrom 50 to 500 ìm, and inlet pressures between 60 to 90 psia.The acquired data include the flow rate, oil-cut and dropletsize distribution in the inlet and in the underflow, the rejectflow rate and oil concentration in the overflow and theseparation efficiency. Additional data for velocity profileswere taken from the literature, especially from the Colman andThew (1980) study. Excellent agreement is observed betweenthe model prediction and the experimental data with respect toboth separation efficiency (average absolute relative error of3%) and pressure drop (average absolute relative error of1.6%).
机译:在过去的几十年中,液-液水力旋流器(LLHC)被石油工业广泛使用。文学中有关LLHC的大量信息包括实验数据,计算流体力学模拟和现场应用。过去,LLHC的设计主要基于经验。然而,迄今为止,还没有为LLHC开发简单的整体设计机理模型。这项研究的目的是为脱脂LLHC开发一种机理模型,并根据可用的和新的实验数据对其进行测试。该模型将能够预测LLHC中的流体动力学行为,为LLHC现场应用提供设计工具,为LLHC开发了一个简单的机械模型,该模型所需的输入为:LLHC几何形状,流体特性,入口液滴尺寸分布和操作条件。该模型能够预测LLHC流体动力流场,即连续相的轴向,切向和径向速度分布。这些分离效率和迁移概率是基于旋流强度预测和液滴轨迹分析确定的。通过能量平衡分析来预测流量,即从入口到底流的压降。在研究过程中,使用了2“ MQ Hydroswirl水力旋流器进行了广泛的实验程序。入口流量条件为:总流量在27之间至18 gpm,切油率高达10%,中值液滴尺寸分布为50至500ìm,入口压力在60至90 psia之间,溢流中的废液流速和油浓度及分离效率。速度剖面的其他数据来自文献,特别是来自Colman andThew(1980)的研究。在分离效率(平均绝对相对误差为3%)和压降(平均绝对相对误差为1.6%)方面,模型预测与实验数据之间存在极好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号