首页> 外文会议>SPE 7th Latin American and Caribbean petroleum engineering conference >Scaling Up of Laboratory Relative Permeability Curves. An Advantageous Approach Based on Realistic Average Water Saturations
【24h】

Scaling Up of Laboratory Relative Permeability Curves. An Advantageous Approach Based on Realistic Average Water Saturations

机译:放大实验室相对渗透率曲线。一种基于实际平均水饱和度的有利方法

获取原文
获取原文并翻译 | 示例

摘要

Accordingly with Welge formulation, to obtain relativernpermeability curves at laboratory, all calculations are made onrna selected point of the sample. Usually this point is located atrnthe outlet face of the sample, where production rates arerndirectly measured. As a result, relative permeability curves arernreported as function of point saturations and not as function ofrnaverage saturations. Laboratory curves are then adapted tornreproduce reservoir behavior, usually through the derivation ofrnpseudo functions. With usual methodologies, this pseudorncurves are also expressed as function of point saturations andrnintroduced in numerical simulators. In spite of this procedure,rnnumerical simulators perform their calculations using thernaverage water saturation at every grid block. Although pointrnand average saturations are expected to be the same atrninfinitely small grid size, this is not the case with coarse arealrnsimulation grids.rnIn this paper, water-cut as a function of produced oil isrnanalyzed for a linear case. Several cases are developed usingrnrelative permeability curves defined as function of pointrnsaturations for different grid sizes, and as a function ofrnaverage water saturation. It is shown that only curves withrnaverage values give reliable data.rnAs a result of this work, an advantageous methodology torntransform laboratory measured curves into those consistentrnwith numerical simulation approach is presented. It is alsornshown that the use of rock relative permeability curves,rnpreviously adapted to the particular geometry of the systemrnunder study, drastically reduces the number of grid blocksrnrequired and overcomes numerical dispersion.
机译:因此,采用韦尔格公式,为在实验室获得相对渗透率曲线,所有计算均在样品的选定点进行。通常,此点位于样品的出口面上,在此直接测量生产率。结果,相对渗透率曲线作为点饱和度的函数而不是平均饱和度的函数被报告。然后通常通过推导伪函数使实验室曲线适应储层行为。使用常规方法,该伪曲线也表示为点饱和度的函数,并在数值模拟器中引入。尽管执行此过程,数值模拟器仍使用每个网格块的平均水饱和度执行计算。尽管在无限小的网格尺寸下期望点和平均饱和度是相同的,但对于粗糙的模拟网格却不是这种情况。在本文中,对线性情况下的含水率与成品油的函数进行了分析。使用相对渗透率曲线开发了几种情况,相对渗透率曲线定义为不同网格大小的点饱和度的函数,以及平均水饱和度的函数。结果表明,只有数值平均值的曲线才能提供可靠的数据。作为这项工作的结果,提出了一种有利的方法,可以将实验室测量的曲线转换为与数值模拟方法一致的曲线。还表明,使用先前相对于所研究系统的特定几何形状的岩石相对渗透率曲线,可以大大减少所需的网格块数并克服数值离散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号