【24h】

MOLECULAR STRUCTURE AND RHEOLOGY RELATIONSHIP OF POLYETHYLENES

机译:聚乙烯的分子结构和流变学关系

获取原文
获取原文并翻译 | 示例

摘要

The structure-rheology relationship is investigated in three polyethylenes namely high density polyethylene (HDPE), a metallocene linear low density polyethylene with no chain branching (mLLDPE) and a metallocene polyethylene containing long chain branching (mLLDPE-LCB). Shear and extensional rheology measurements were carried out in the linear viscoelastic regime and correlated to the molecular weight, molecular weight distribution and long chain branching. Shear rheology showed that HDPE exhibits a viscosity profile whereby the Newtonian behavior is not completely attained as shown by the slope of the storage modulus in the terminal region. mLLDPE was found to possess the longest and well-defined Newtonian region and the highest transition to the non-Newtonian region. In the presence of long chain branching (LCB), the terminal region is not apparent while the onset of shear thinning is decreased. Such behavior can be related to the effects of MWD and LCB and was corroborated using extensional viscosity measurements, which showed slight deviation from the LVE envelope for broader molecular weight distribution and strain hardening in the presence of long chain branching.
机译:研究了三种聚乙烯的结构-流变关系,即高密度聚乙烯(HDPE),无链支化的茂金属线性低密度聚乙烯(mLLDPE)和含长链支化的茂金属聚乙烯(mLLDPE-LCB)。剪切流变学和拉伸流变学测量是在线性粘弹性范围内进行的,并且与分子量,分子量分布和长链支化相关。剪切流变学表明,HDPE表现出粘度分布,从而不能完全实现牛顿行为,如末端区域中储能模量的斜率所示。发现mLLDPE拥有最长和定义明确的牛顿区,以及向非牛顿区的最高过渡。在存在长链支化(LCB)的情况下,末端区域不明显,而剪切稀化的开始减少了。此类行为可能与MWD和LCB的作用有关,并且使用延伸粘度测量得到了证实,该测量结果显示与LVE包膜略有偏离,从而在长链支化的情况下具有较宽的分子量分布和应变硬化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号