首页> 外文会议>Smart Structures and Materials 2006: Active Materials: Behavior and Mechanics >Experimental Test for Numerical Simulation of SMA Characteristics And Its Simulation
【24h】

Experimental Test for Numerical Simulation of SMA Characteristics And Its Simulation

机译:SMA特性数值模拟的实验测试及其模拟

获取原文
获取原文并翻译 | 示例

摘要

Shape memory alloy (SMA) can exhibit interesting features such as the diverse material behaviors according to the induced temperature and stress. SMA changes its material properties progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training' completion. The presence of permanent deformation, due to plastic strains or irreversible martensite variants during the material training, shifts the material characteristic curves of SMA wire. In this study, SMA wires that have been in a stable state through the training are used. Stress-strain curve of SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the effect of mechanical/thermal training, rate effect according to thermal cycle times or strain rates, etc. Until now, the rate effect is not considered significantly in the SMA research and only extremely slow time rate is considered in most SMA experiments. It is common to use rate independent constitutive relations in the modeling and simulation of SMA behaviors. Therefore to make the actuators using an SMA wire which has the fast response or short-time thermal cycle environment, rate dependency should be properly considered. The result of two-way experiment at each (short or long) cycle time in phenomenological aspect shows that stress-strain-temperature relations and hysteresis characteristics depend upon the cycle time. In short-time cycle, strain-temperature curve moves in counterclockwise and the size of hysteresis envelop is large. As the time rate of the thermal cycle increases, the size of the hysteresis envelop is getting smaller and strain-temperature curve moves along the clockwise direction above a certain thermal cycle time. Above that thermal cycle time, hysteresis trajectory is fixed in the stable state. These new effects of SMA are investigated and the effect would be explained qualitatively. The present work presents the experimental test using 1-D SMA wire after training completion by mechanical/thermal cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equation including the training and thermal rate effect.
机译:形状记忆合金(SMA)可以表现出有趣的功能,例如根据感应的温度和应力而变化的材料性能。 SMA在循环加载条件下会逐渐改变其材料性能,并在一定数量的应力/温度加载-卸载循环后最终达到稳定的路径(状态),即所谓的“训练”完成。在材料训练过程中,由于塑性应变或不可逆马氏体变体而导致的永久变形会改变SMA线材的材料特性曲线。在这项研究中,使用了经过培训一直处于稳定状态的SMA导线。测量了不同温度水平下SMA丝的应力-应变曲线。此外,我们还观察到其他重要影响,例如机械/热训练的影响,根据热循环时间或应变率产生的速率效应等。到目前为止,在SMA研究中,速率效应并未被视为重要因素,而仅是极其缓慢的时间在大多数SMA实验中都考虑了速率。在SMA行为的建模和仿真中通常使用与速率无关的本构关系。因此,要使用具有快速响应或短时间热循环环境的SMA线材制造执行器,应适当考虑速率依赖性。在现象学方面,在每个(短或长)循环时间进行双向实验的结果表明,应力-应变-温度关系和滞后特性取决于循环时间。在短时间周期中,应变温度曲线沿逆时针方向移动,磁滞包络线的尺寸较大。随着热循环时间速率的增加,磁滞包络的尺寸越来越小,并且应变温度曲线在特定的热循环时间之上沿顺时针方向移动。在该热循环时间以上,磁滞轨迹固定在稳定状态。对SMA的这些新作用进行了研究,并将对该作用进行定性解释。本工作介绍了通过机械/热循环训练完成后使用一维SMA线进行的实验测试。通过这些测试,我们可以测量SMA的特性。利用估计的SMA特性和效应,我们将实验结果与基于SMA本构方程(包括训练和热速率效应)的模拟结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号