首页> 外文会议>Smart Structures and Integrated Systems >Development of an Active Twist Rotor Blade with Distributed Actuation and Orthotropic Material
【24h】

Development of an Active Twist Rotor Blade with Distributed Actuation and Orthotropic Material

机译:带有分布式驱动和正交异性材料的主动扭转转子叶片的开发

获取原文
获取原文并翻译 | 示例

摘要

Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87rn/s based on a 2.5to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.
机译:直升机旋翼的单独桨叶控制(IBC)和高次谐波控制(HHC)有望成为提高飞行性能,减少振动和噪音的一种方法。对于那些控制,需要转子叶片的额外的扭转致动。所开发的概念包括在转子叶片蒙皮中实施分布式压电致动。为了在给定的约束(例如抗扭刚度和给定的执行器设计)内最大化扭转力,该概念利用了正交各向异性的转子叶片蒙皮。这样,剪切驱动与正交各向异性耦合的组合所产生的扭曲要比这些效应中的每一个单独产生的扭曲更大。以前采用分布式致动的方法是使用准各向同性复合材料在+/- 45°方向上运行的致动器。使用简化的演示器开发并验证了叶片的有限元模型。这项研究的目的是确定各种几何和材料参数的影响,以优化叶片的主动扭曲性能。整个开发过程都包含在一个迭代过程中,然后进行客观评估。为此,在BO105模型转子叶片的基础上开发了详细的结构模型,以预测转子动力学,稳定性,空气动力学和声学方面的性能。转子动态仿真提供了主动捻转子性能的初步概述。与BO105基线转子相比,在叶尖的主动扭转为0.8°时,噪声降低了3 dB。另外,基于2.5至BO105,计算出在87rn / s时功率降低了2.3%。已经设计并制造了一个转子半径为2m的演示叶片。将对该叶片进行测试,以证明在离心载荷下也可以实现计算出的最大扭曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号