【24h】

Modeling spectral effects in Earth-observing satellite instruments

机译:模拟地球观测卫星仪器中的频谱效应

获取原文
获取原文并翻译 | 示例

摘要

We present a simple, spreadsheet-based model to examine the effects of the spectral response functions of individual instrument bands on their measurements of top-of-the-atmosphere radiances. The model uses spectral radiances at 1 nm resolution from the near ultraviolet to the shortwave infrared at wavelengths from 300 nm to 2500 nm, convolving them with the spectral responses of the bands to calculate band-average spectral radiances. For on-orbit calibration purposes, the model uses nominal solar irradiance and lunar albedo spectra to provide saturation, diffuser, and lunar radiances for the bands. For prelaunch calibration purposes, the model uses a 2850K Planck function, normalized to a maximum value of unity, to approximate the spectral shape from a laboratory integrating sphere source. For Earth-exiting radiances, the model uses nominal radiance spectra over a blue ocean, a desert, and a grassland. These spectra are provided with the effects of atmospheric trace gas absorption removed. In addition, the model includes a trace gas transmittance spectrum that can be modified as a function of airmass. Currently, a spectrum with an airmass of 2.4 is used. In the model, this transmittance spectrum is combined with the three Earth-exiting radiance spectra to provide top-of-the-atmosphere radiance spectra both with and without trace gas absorption features. Here we use the model to investigate three types of spectral response features. The first study involves the out-of-band response from one of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands. Using the model, we demonstrate a technique to correct for the effect of that response on measurements of Earth-exiting radiances. The second study shows the effect of in-band spectral differences in an instrument band with multiple detectors. In this example, the effects are small, but differ with the type of Earth scene and with the amount of atmospheric trace gas absorption. On-orbit corrections for portions these detector-to-detector spectral differences are possible. However, at some level these differences will cause a residual striping in the band's measurements that cannot be removed. The final study examines measurements by a proposed multispectral grating-based spectrometer of the wavelength region near 760 nm, where there is a substantial absorption feature from atmospheric oxygen. Based on the bandwidth and wavelength spacing of the instrument's bands, we investigate the use of the absorption feature to provide a wavelength calibration for the instrument. This model provides a tool for use in the design of new satellite instruments. In addition, it is possible to use the model to help mitigate the effects of actual spectral response features in instrument bands after those features are revealed during prelaunch characterization.
机译:我们提出了一个基于电子表格的简单模型,以检查各个乐器频段的光谱响应函数对其在大气顶辐射率测量中的影响。该模型使用波长为300 nm至2500 nm的从近紫外到短波红外的1 nm分辨率的光谱辐射,将它们与波段的光谱响应进行卷积,以计算平均光谱的光谱辐射。为了进行在轨校准,该模型使用标称太阳辐照度和月球反照率光谱为波段提供饱和,漫射和月球辐射。为了进行发射前校准,该模型使用2850K普朗克函数(已归一化为最大值)来近似实验室积分球源的光谱形状。对于地球辐射,该模型使用了蓝色海洋,沙漠和草地上的标称辐射光谱。这些光谱具有消除大气中痕量气体吸收的影响。此外,该模型还包括痕量气体透射光谱,可以根据气体质量对其进行修改。当前,使用空气质量为2.4的频谱。在该模型中,此透射光谱与三个地球辐射光谱结合在一起,以提供具有和不具有痕量气体吸收功能的最高大气辐射光谱。在这里,我们使用该模型来研究三种类型的光谱响应特征。第一项研究涉及一个海景宽视场传感器(SeaWiFS)频段的带外响应。使用该模型,我们演示了一种校正该响应对地球辐射辐射测量结果影响的技术。第二项研究显示了带多个检测器的仪器频带中带内频谱差异的影响。在此示例中,影响很小,但是随地球场景的类型以及大气中痕量气体吸收的数量而不同。对于这些探测器之间的光谱差异的部分进行在轨校正是可能的。但是,在某种程度上,这些差异将导致无法去除的频段测量残留条纹。最终研究检查了由提议的基于多光谱光栅的光谱仪对760 nm附近波长区域的测量结果,其中大气氧气具有明显的吸收特征。根据仪器频段的带宽和波长间隔,我们研究了吸收功能的使用,以为仪器提供波长校准。该模型提供了用于设计新卫星仪器的工具。此外,在启动前表征过程中揭示了那些特征后,可以使用该模型来帮助减轻仪器频段中实际光谱响应特征的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号