首页> 外文会议>Seminar on new trends in research of energetic materials >A novel strategy for smart control by micro-scale oscillatory networks of the reactionary zones for enhanced operational capabilities of the next-generation solid propulsion systems
【24h】

A novel strategy for smart control by micro-scale oscillatory networks of the reactionary zones for enhanced operational capabilities of the next-generation solid propulsion systems

机译:通过反应区的微型振荡网络进行智能控制的新策略,可增强下一代固体推进系统的运行能力

获取原文

摘要

The ability to actively throttle would substantially increase the flexibility of a solid propulsion systems regardless of the mission profile. Fundamental understanding of the micro-scale combustion mechanisms is essential to the development of the next generation technologies for extreme control of the propellant thrust and control by combustion instabilities. Both experiments and theory confirm that the micro- and nano- scale oscillatory networks excitation in the solid propellants reactionary zones is a rather universal phenomenon. In accordance with our new concept, the micro- and nano- scale structures form both the fractal and self-organized wave patterns in the energetic materials (EM) reactionary zones. In particular for each exact frequency of the oscillatory process in the reactionary zone corresponds the unique self-organized spacial patterns of the micro- and nano- scale structures. A novel strategy for smart real-time control of the thrust and combustion instabilities in solid propulsion systems are based on control by self-organization of the micro-and nano- scale oscillatory networks and self-organized patterns formation in the reactionary zones with use of the system of acoustic and electro-magnetic fields, generated by special kind of the electric discharges along with resonance laser radiation. The electric discharges also are capable for excitation of the wave patterns in the reactionary zones. Application of special kind of the electric discharges demands the minimum expenses of energy and opens prospects for almost inertial-free control by combustion processes. Such method of control can be organized with assistance of the neural network-based system. Neural network-based system allows to process, analyze and use the cymatics information - a set of image, acoustic, electro-magnetic and thermal hologramines that are registered online in the EM reactionary zones. Through online retraining, the neural network-based system can provide precise optimization of the intra-chamber processes and thrust by accommodating of the reactionary zones self-organizing due to flight program and improving operating flexibility. The main advantages of the proposed approach consisted in the natural ability of neural networks in modeling nonlinear dynamics in a fast and simple way and in the possibility to address the process to be modeled as an input-output black box. with little or no mathematical information on the system. The suggested strategy opens new possibilities for enhanced operational capabilities of the next-generation solid propulsion systems.
机译:主动节流的能力将大大增加固体推进系统的灵活性,而与任务配置无关。对微观燃烧机理的基本了解对于下一代技术的发展至关重要,该技术可以对推进剂推力进行极端控制,并通过燃烧不稳定性进行控制。实验和理论均证实,固体推进剂反应区中的微米级和纳米级振荡网络激发是相当普遍的现象。根据我们的新概念,微米和纳米级结构在高能材料(EM)反应区中同时形成了分形和自组织波型。特别是对于反应区中振荡过程的每个精确频率,都对应着微米级和纳米级结构的独特的自组织空间模式。智能实时控制固体推进系统中推力和燃烧不稳定性的新策略是基于微和纳米级振荡网络的自组织控制,以及利用由特殊类型的放电以及共振激光辐射产生的声场和电磁场系统。放电也能够激发反应区中的波型。特殊放电的应用要求最小的能量消耗,并为通过燃烧过程实现几乎无惯性控制开辟了前景。可以在基于神经网络的系统的帮助下组织这种控制方法。基于神经网络的系统允许处理,分析和使用cymatics信息-一组在EM反应区在线注册的图像,声学,电磁和热全息图。通过在线再培训,基于神经网络的系统可以通过适应因飞行程序而自组织的反作用区并提高操作灵活性,来提供腔室内过程和推力的精确优化。提出的方法的主要优点包括神经网络以快速简便的方式对非线性动力学进行建模的自然能力,以及解决将其建模为输入-输出黑匣子的过程的可能性。系统上很少或没有数学信息。建议的策略为增强下一代固体推进系统的作战能力开辟了新的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号