【24h】

Oxidative stress in microorganisms exposed to iron nanoparticles

机译:暴露于铁纳米颗粒的微生物中的氧化应激

获取原文
获取原文并翻译 | 示例

摘要

Engineered iron nanoparticles, with sizes smaller than 100 nm, have been of high concern because of their promising capability in environmental remediation. Nanoparticles based on zero-valent iron (nZVI) have the potential not only to migrate in the environment and interact with pollutants but also influence the living organisms by direct impact or by changes of groundwater parameters. The basis of many food chains is dependent on the benthic and soil flora and fauna. In general, nZVI can significantly influence the soil microbial diversity, interact with ions in the soil, form non-toxic complex salts and/or be adsorbed. Moreover, nanoparticles could have indirect effect on microorganisms via changes in bioavailability of essential compounds. Iron can convert less reactive hydrogen peroxide to more reactive oxygen species (ROS) via the Fenton reaction. ROS that includes superoxide radicals or hydrogen peroxide are also generated as a by-product of aerobic metabolism, because aerobic organisms use oxygen as a terminal electron acceptor when producing energy. Mitochondrial electron transport reduces 95% of O_2 to water, but the remaining 5% of O_2 is reduced to superoxide radical. Unnaturally elevated concentrations of ROS in microbial cell can result in a situation known as the oxidative stress. Production of ROS constitutes a severe risk to photosynthetic organisms such as cyanobacteria and algae, because a common source of superoxide radicals is photosynthesis. Mitochondria and chloroplasts have intensive electron fluxes which also contain higher oxygen and metal ion concentrations and therefore both organelles are more vulnerable to oxidative stress.
机译:尺寸小于100 nm的工程铁纳米粒子因其在环境修复方面的前景广阔而备受关注。基于零价铁(nZVI)的纳米颗粒不仅具有在环境中迁移并与污染物相互作用的潜力,而且还可以通过直接影响或通过改变地下水参数来影响生物。许多食物链的基础取决于底栖和土壤动植物。通常,nZVI可以显着影响土壤微生物多样性,与土壤中的离子相互作用,形成无毒的复合盐和/或被吸附。此外,纳米粒子可能通过必需化合物生物利用度的变化而对微生物产生间接影响。铁可以通过芬顿反应将反应性较低的过氧化氢转化为反应性较高的氧(ROS)。包括超氧自由基或过氧化氢在内的ROS也是有氧代谢的副产物,因为有氧生物在产生能量时会使用氧作为末端电子受体。线粒体电子传输将95%的O_2还原为水,但其余5%的O_2被还原为超氧自由基。微生物细胞中ROS浓度异常升高会导致氧化应激。 ROS的产生对诸如蓝细菌和藻类的光合生物构成严重风险,因为超氧化物自由基的常见来源是光合作用。线粒体和叶绿体具有密集的电子通量,其中还包含较高的氧气和金属离子浓度,因此,两个细胞器都更容易受到氧化应激的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号