首页> 外文会议>Renewable fuels from sunlight and electricity >Photobiological H_2 Production: Theoretical Maximum Light Conversion Efficiency and Strategies to Achieve It
【24h】

Photobiological H_2 Production: Theoretical Maximum Light Conversion Efficiency and Strategies to Achieve It

机译:H_2光生物的生产:理论上最大的光转换效率及其实现策略

获取原文
获取原文并翻译 | 示例

摘要

Photobiological H_2 production depends on charge separation by reaction centers coupled to Chlorophyll a, Chlorophyll b and carotenoid light-absorbing antennae, with well-defined spectral and redox characteristics. The initial charge-separated state in the reaction centers is stabilized by electron transfer to carriers within two protein complexes, Photosystem Ⅰ and Photosystem Ⅱ that act in series. Two photons are required to transfer each electron from the PS11 electron donor, water, to the final PS1 electron acceptor, ferredoxin. Unlike most tandem photoelectrochemical designs, biological photosystems are coupled to water oxidizing and H_2-producing enzymes and these reactions occur within the same cell compartment, the chloroplast. The above-described physical parameters set the theoretical maximum solar-conversion efficiency of biological systems to 12-13%. However, due to a large number of structural and regulatory processes in vivo, the actual conversion efficiency of biological systems to H_2 is of the order of 1%. This paper addresses these limitations.
机译:光生物学H_2的产生取决于与叶绿素a,叶绿素b和类胡萝卜素吸光触角耦合的反应中心的电荷分离,具有明确的光谱和氧化还原特性。通过将电子转移至串联作用的两种蛋白质复合物-光系统Ⅰ和光系统Ⅱ中的载体,使反应中心的初始电荷分离状态得以稳定。需要两个光子才能将每个电子从PS11电子供体水转移到最终PS1电子受体铁氧还蛋白。与大多数串联光电化学设计不同,生物光系统与水氧化酶和产生H_2的酶偶联,这些反应发生在同一细胞室内,即叶绿体中。上述物理参数将生物系统的理论最大太阳转换效率设置为12-13%。但是,由于体内大量的结构和调节过程,生物系统向H_2的实际转化效率约为1%。本文解决了这些限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号