首页> 外文会议>Renewable Energies and Vehicular Technology (REVET), 2012 First International Conference on >Kinetic study for the adsorption of vapour water adsorption on zeolite 13X and silica gel
【24h】

Kinetic study for the adsorption of vapour water adsorption on zeolite 13X and silica gel

机译:沸石13X和硅胶对蒸气水吸附的动力学研究

获取原文
获取原文并翻译 | 示例

摘要

Technologies concerning complex transfers of heat, mass and movement quantity are developed in many areas such as the environment and the security. In these technologies, we use a large approach of fluid mechanics. Our approach targets the flows around an obstacle, and in a reactive porous medium. Many industrial processes use the fluid mechanics, the mass and heat transfers or the diffusion of particles and chemical species. The couplings of these transfers phenomena are often badly controlled and require to be analyzed in an analytical, experimental and/ or digital way. The physical model of kinetics adsorption of a gas by a microporous solid, proposed by Mhiri et al, constitutes a base for the comprehension of the mechanism of this phenomenon. This work proposes a physical sense of all terms appearing in this model. In this paper, we underscore the importance of the physical kinetic of gas adsorption by a microporous solid. Using a good choice of pairs, we have determined: the minimal distance from which the interaction forces adsorbate-adsorbent orients the adsorbate molecule to the adsorbent, the existence of a critical temperature and its effect on the relaxation time relative to the adsorbed matter quantity, the underscoring of the adsorbed matter fluctuation in which interval it is active, the determination of the physical meaning of one among the studied values enables to propose a method to determine the interaction force work and to compute it in future works. This paper shows the importance of the model and all the possibilities that allow a deeper study of the mechanism of a gas adsorption by a microporous solid.
机译:在许多领域,例如环境和安全领域,都开发了涉及热量,质量和运动量的复杂传递的技术。在这些技术中,我们使用了大量的流体力学方法。我们的方法针对障碍物周围以及反应性多孔介质中的流动。许多工业过程使用流体力学,质量和热传递或颗粒和化学物质的扩散。这些转移现象的耦合通常受到不良控制,并需要以分析,实验和/或数字方式进行分析。 Mhiri等人提出的微孔固体对气体进行动力学吸附的物理模型为理解这种现象的机理奠定了基础。这项工作提出了该模型中出现的所有术语的物理意义。在本文中,我们强调了微孔固体吸附气体的物理动力学的重要性。通过选择合适的对,我们确定:相互作用力使被吸附物-吸附剂定向到被吸附物的最小距离,临界温度的存在及其对弛豫时间的影响相对于被吸附物质的量,为了强调吸附物质起伏在哪个时间间隔内的活跃性,确定研究值之一的物理意义可以提出一种确定相互作用力功的方法,并在以后的工作中对其进行计算。本文展示了该模型的重要性以及所有可能深入研究微孔固体气体吸附机理的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号