首页> 外文会议>Remote sensing and modeling of the atmosphere, oceans, and interactions IV >Estimation of regional surface CO_2 fluxes with GOSAT observations using two inverse modeling approaches
【24h】

Estimation of regional surface CO_2 fluxes with GOSAT observations using two inverse modeling approaches

机译:使用两种逆建模方法利用GOSAT观测值估算区域表面CO_2通量

获取原文
获取原文并翻译 | 示例

摘要

Inverse estimation of surface CO_2 fluxes is performed with atmospheric transport model using ground-based and GOSAT observations. The NIES-retrieved CO2 column mixing (X_(CO2)) and column averaging kernel are provided by GOSAT Level 2 product v. 2.0 and PPDF-DOAS method. Monthly mean CO_2 fluxes for 64 regions are estimated together with a global mean offset between GOSAT data and ground-based data. We used the fixed-lag Kalman filter to infer monthly fluxes for 42 sub-continental terrestrial regions and 22 oceanic basins. We estimate fluxes and compare results obtained by two inverse modeling approaches. In basic approach adopted in GOSAT Level 4 product v. 2.01, we use aggregation of the GOSAT observations into monthly mean over 5×5 degree grids, fluxes are estimated independently for each region, and NIES atmospheric transport model is used for forward simulation. In the alternative method, the model-observation misfit is estimated for each observation separately and fluxes are spatially correlated using EOF analysis of the simulated flux variability similar to geostatistical approach, while transport simulation is enhanced by coupling with a Lagrangian transport model Flexpart. Both methods use using the same set of prior fluxes and region maps. Daily net ecosystem exchange (NEE) is predicted by the Vegetation Integrative Simulator for Trace gases (VISIT) optimized to match seasonal cycle of the atmospheric CO_2. Monthly ocean-atmosphere CO_2 fluxes are produced with an ocean pCO2 data assimilation system. Biomass burning fluxes were provided by the Global Fire Emissions Database (GFED); and monthly fossil fuel CO2 emissions are estimated with ODIAC inventory. The results of analyzing one year of the GOSAT data suggest that when both GOSAT and ground-based data are used together, fluxes in tropical and other remote regions with lower associated uncertainties are obtained than in the analysis using only ground-based data. With version 2.0 of L2 X_(CO2) the fluxes appear reasonable for many regions and seasons, however there is a need for improving the L2 bias correction, data filtering and the inverse modeling method to reduce estimated flux anomalies visible in some areas. We also observe that application of spatial flux correlations with EOF-based approach reduces flux anomalies.
机译:使用地面和GOSAT观测值,通过大气传输模型对表面CO_2通量进行逆估计。 NIES回收的CO2色谱柱混合(X_(CO2))和色谱柱平均内核由GOSAT Level 2产品v。2.0和PPDF-DOAS方法提供。估算了64个区域的月平均CO_2通量,以及GOSAT数据和地面数据之间的全球平均偏移。我们使用固定滞后卡尔曼滤波器来推断42个次大陆地面区域和22个海洋盆地的月通量。我们估计通量并比较通过两种逆建模方法获得的结果。在GOSAT 4级产品v.2.01中采用的基本方法中,我们将GOSAT观测值聚合到5×5度网格上的月平均数中,每个区域的通量被独立估计,并且使用NIES大气传输模型进行正向模拟。在替代方法中,分别为每个观测值估计模型观测失配,并使用EOF分析类似于地统计方法对通量进行可变性的EOF分析,使通量在空间上相关,同时通过与拉格朗日运输模型Flexpart耦合来增强运输模拟。两种方法都使用相同的先验通量和区域图集。植被的痕量气体综合模拟器(VISIT)预测了每日的净生态系统交换量(NEE),以使其与大气CO_2的季节性周期匹配。海洋pCO2数据同化系统产生每月海洋-大气CO_2通量。生物质燃烧通量由全球火灾排放数据库(GFED)提供;每月的化石燃料CO2排放量可通过ODIAC库存进行估算。对一年的GOSAT数据进行分析的结果表明,与同时使用GOSAT和地面数据一起使用时,与仅使用地面数据进行分析相比,获得的热带和其他偏远地区的通量具有较低的相关不确定性。对于L2 X_(CO2)版本2.0,通量对于许多地区和季节似乎都是合理的,但是仍需要改进L2偏差校正,数据过滤和逆建模方法,以减少某些地区可见的估计通量异常。我们还观察到空间通量相关性与基于EOF的方法的应用减少了通量异常。

著录项

  • 来源
  • 会议地点 Kyoto(JP)
  • 作者单位

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506,National Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo, Japan, 190-8518;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    Central Aerological Observatory, 3 Pervomaiskaya St., Dolgoprudny, Russia, 141700;

    Central Aerological Observatory, 3 Pervomaiskaya St., Dolgoprudny, Russia, 141700;

    Central Aerological Observatory, 3 Pervomaiskaya St., Dolgoprudny, Russia, 141700;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

    Laboratory for Science of Climate and Environment, CEA-Orme des Merisiers, Gif-sur-Yvette, France, F-91191;

    CIRA, Colorado State Univ., Fort Collins, CO, USA, 80523-1375,GMD, NOAA/ESRL, 325 Broadway, Boulder, CO, USA, 80305-3337;

    Indian Inst. for Tropical Meteorology, Dr Homi Bhabha Road, Pashan, Pune, India, 411008;

    RIGC, JAMSTEC, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Japan, 236-0001;

    Oak Ridge National Lab., Oak Ridge, TN, USA, 37831-6290;

    GMD, NOAA/ESRL, 325 Broadway, Boulder, CO, USA, 80305-3337;

    GMD, NOAA/ESRL, 325 Broadway, Boulder, CO, USA, 80305-3337;

    CGER, National Inst. for Environmental Studies, 16-2 Onogawa, Tsukuba, Japan, 305-8506;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbon dioxide; remote sensing; inverse modeling; surface fluxes;

    机译:二氧化碳;遥感;逆建模表面通量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号