首页> 外文会议>Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII >Land surface modeling and satellite passive microwave imagery: a comparison of top soil moisture and surface temperature estimates
【24h】

Land surface modeling and satellite passive microwave imagery: a comparison of top soil moisture and surface temperature estimates

机译:陆地表面建模和卫星无源微波成像:表层土壤水分和地表温度估算值的比较

获取原文
获取原文并翻译 | 示例

摘要

Improved accuracy in defining initial conditions for fully-coupled numerical weather prediction models (NWP) along with continuous internal bias corrections for baseline data generated by uncoupled Land Surface Models (LSM), is expected to lead to improved short-term to long-range weather forecasting capability. Because land surface parameters are highly integrated states, errors in land surface forcing, model physics and parameterization tend to accumulate in the land surface stores of these models, such as soil moisture and surface temperature. This has a direct effect on the model's water and energy balance calculations, and will eventually result in inaccurate weather predictions.rnSurface soil moisture and surface temperature estimates obtained with a recently improved retrieval algorithm from the Advanced Microwave Scanner Radiometer (AMSR) aboard NASA's Earth Observing System (EOS) Aqua satellite are evaluated against model output of the Community Noah Land Surface Model operated within the Land Information System (LIS) forced with atmospheric data of the NCEP Global Data Assimilation System (GDAS). The surface temperature retrievals and Noah LSM output are further evaluated against local measurements from the Mesonet observational grid in Oklahoma.rnPreliminary analysis presented here shows a potential to improve simulated surface temperature estimates of the Noah model by assimilating satellite derived surface temperature fields. The potential for updating (top) soil moisture seems to be more restricted, mainly as a result of the relatively thick top soil layer of the model as compared to the passive microwave emanation depth.
机译:定义全耦合数值天气预报模型(NWP)初始条件时提高的准确性,以及对未耦合陆面模型(LSM)生成的基线数据进行连续内部偏差校正的方法,有望改善短期到长期天气预测能力。由于地表参数是高度积分的状态,因此地表强迫,模型物理学和参数化方面的误差往往会累积在这些模型的地表存储中,例如土壤湿度和地表温度。这直接影响模型的水和能量平衡计算,最终将导致不准确的天气预报。rn使用NASA的地球观测仪上的高级微波扫描辐射仪(AMSR)的最新改进检索算法获得的表面土壤水分和表面温度估算值。系统(EOS)的Aqua卫星是根据由NCEP全球数据同化系统(GDAS)的大气数据强迫在土地信息系统(LIS)中运行的Community Noah地表模型的模型输出进行评估的。根据俄克拉荷马州Mesonet观测网格的局部测量结果进一步评估了地表温度取值和Noah LSM输出。此处提供的初步分析显示,通过吸收人造卫星的地表温度场,可以改善Noah模型的模拟地表温度估算值。更新(顶部)土壤水分的潜力似乎受到更多限制,这主要是由于与被动微波辐射深度相比,该模型的顶部土壤层相对较厚。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号