首页> 外文会议>Radar Sensor Technology XIX; and Active and Passive Signatures VI >Efficient Pulse Compression for LPI Waveforms Based on a Nonparametric Iterative Adaptive Approach
【24h】

Efficient Pulse Compression for LPI Waveforms Based on a Nonparametric Iterative Adaptive Approach

机译:基于非参数迭代自适应方法的LPI波形有效脉冲压缩

获取原文
获取原文并翻译 | 示例

摘要

In order to achieve low probability-of-intercept (LPI), radar waveforms are usually long and randomly generated. Due to the randomized nature, Matched filter responses (autocorrelation) of those waveforms can have high sidelobes which would mask weaker targets near a strong target, limiting radar's ability to distinguish close-by targets. To improve resolution and reduced sidelobe contaminations, a waveform independent pulse compression filter is desired. Furthermore, the pulse compression filter needs to be able to adapt to received signal to achieve optimized performance. As many existing pulse techniques require intensive computation, real-time implementation is infeasible. This paper introduces a new adaptive pulse compression technique for LPI waveforms that is based on a nonparametric iterative adaptive approach (IAA). Due to the nonparametric nature, no parameter tuning is required for different waveforms. IAA can achieve super-resolution and sidelobe suppression in both range and Doppler domains. Also it can be extended to directly handle the matched filter (MF) output (called MF-IAA), which further reduces the computational load. The practical impact of LPI waveform operations on IAA and MF-IAA has not been carefully studied in previous work. Herein the typical LPI waveforms such as random phase coding and other non-LPI waveforms are tested with both single-pulse and multi-pulse IAA processing. A realistic airborne radar simulator as well as actual measured radar data are used for the validations. It is validated that in spite of noticeable difference with different test waveforms, the IAA algorithms and its improvement can effectively achieve range-Doppler super-resolution in realistic data.
机译:为了实现低拦截概率(LPI),雷达波形通常较长且随机生成。由于随机性,这些波形的匹配滤波器响应(自相关)可能具有较高的旁瓣,这会掩盖强目标附近的较弱目标,从而限制了雷达区分近距离目标的能力。为了提高分辨率并减少旁瓣污染,需要一种与波形无关的脉冲压缩滤波器。此外,脉冲压缩滤波器需要能够适应接收到的信号以获得最佳性能。由于许多现有的脉冲技术需要大量的计算,因此实时实施是不可行的。本文介绍了一种新的LPI波形自适应脉冲压缩技术,该技术基于非参数迭代自适应方法(IAA)。由于具有非参数性质,因此无需为不同的波形进行参数调整。 IAA可以在范围和多普勒域中实现超分辨率和旁瓣抑制。它还可以扩展为直接处理匹配的滤波器(MF)输出(称为MF-IAA),从而进一步减轻了计算负担。 LPI波形操作对IAA和MF-IAA的实际影响尚未在先前的工作中仔细研究过。在此,利用单脉冲和多脉冲IAA处理对诸如随机相位编码和其他非LPI波形之类的典型LPI波形进行测试。实际的机载雷达模拟器以及实际测量的雷达数据都用于验证。可以证明,尽管不同的测试波形存在明显的差异,但IAA算法及其改进可以有效地在实际数据中实现距离多普勒超分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号