【24h】

Range detection using entangled optical photons

机译:使用纠缠的光子进行距离检测

获取原文
获取原文并翻译 | 示例

摘要

Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.
机译:与传统雷达相比,量子雷达是一个新兴领域,在提供显着提高的分辨率方面显示出很大的希望。这种分辨率的关键在于由所使用的光子的纠缠所产生的相关性。当前,与微波机制相比,可用技术仅在光学机制中支持量子雷达的实施和验证,因为微波光子与光学光子相比具有非常低的能量。此外,目前在微波光谱中不存在实用的单光子检测器和发生器。光学领域中可行的应用包括深海目标检测和太空中的高分辨率检测。在本文中,我们提出了一种基于自发参量下变频(SPDC)方法的使用纠缠光子的量子雷达的概念架构。在产生纠缠的光子并从晶体中出来之后,此后不久就可以检测到空转光子。同时,信号光子被发送到目标,并且在其反射后会撞击到雷达的探测器上。从这两次测量中,进行相关数据处理以获得目标距雷达的距离。然后显示各种模拟,以显示可能的分辨率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号