首页> 外文会议>Quantum sensing and nanophotonic devices XII >Converting mid-infrared signals to near-infrared through optomechanical transduction
【24h】

Converting mid-infrared signals to near-infrared through optomechanical transduction

机译:通过光机械转导将中红外信号转换为近红外

获取原文
获取原文并翻译 | 示例

摘要

Mid-infrared silicon photonics emerge as the dominant technology to bridge photonics and electronics in multifunctional high-speed integrated chips. The transmission and processing of optical signals lying at the mid-infrared wavelength region is ideal for sensing, absorption-spectroscopy and free-space communications and the use of group Ⅳ materials becomes principally promising as the vehicle towards their realization. In parallel, optical forces originating from modes and cavities can reach to outstandingly large values when sizes drop into the nanoscale. In this work, we propose the exploitation of large gradient optical forces generated between suspended silicon beams and optomechanical transduction as a means of converting signals from the mid-infrared to the near-infrared region. A mid-infrared signal is injected into the waveguide system so as to excite the fundamental symmetric mode. In the 2-5μm wavelength range, separation gaps in the 100nm order and waveguide widths ranging from 300-600nm, the mode is mostly guided in the air slot between the waveguides which maximizes the optomechanical coupling coefficient and optical force. The resulting attractive force deflects the waveguides and the deflection is linearly dependent on the mid-infrared optical power. A simple read-out technique using 1.55μm signals with conventional waveguiding in the directional coupler formed by the two beams is analyzed. A positive conversion efficiency (>0dB) is foreseen for waveguides with suspending lengths up to 150μm. The converter could be ideal for use in sensing and spectroscopy rendering the inefficient mid-infrared detectors obsolete. The low-index unconventional guiding in mid-infrared could be a key component towards multifunctional lab-on-a-chip devices.
机译:中红外硅光子学正在成为在多功能高速集成芯片中桥接光子学和电子学的主导技术。位于中红外波长区域的光信号的传输和处理是传感,吸收光谱和自由空间通信的理想选择,并且使用Ⅳ族材料成为实现它们的主要手段。平行地,当尺寸下降到纳米级时,源自模式和腔的光学力可以达到非常大的值。在这项工作中,我们建议利用悬浮硅光束之间产生的大梯度光学力和光机械转导,以将信号从中红外区域转换为近红外区域。将中红外信号注入到波导系统中,以激发基本对称模式。在2-5μm波长范围内,分离间隙为100nm级别,波导宽度为300-600nm,该模式主要在波导之间的气隙中进行引导,从而最大程度地提高了光机械耦合系数和光学力。所产生的吸引力使波导偏转,并且偏转线性依赖于中红外光功率。分析了一种使用1.55μm信号的简单读出技术,该信号在两个光束形成的定向耦合器中具有常规波导。对于悬挂长度最大为150μm的波导,预计会有一个正转换效率(> 0dB)。该转换器非常适合用于传感和光谱学,从而使低效率的中红外检测器过时了。低折射率非常规中红外指南可能是多功能片上实验室设备的关键组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号