首页> 外文会议>Quantum communications and quantum imaging XI >A hybrid quantum system of atoms trapped on ultrathin optical fibers coupled to superconductors
【24h】

A hybrid quantum system of atoms trapped on ultrathin optical fibers coupled to superconductors

机译:捕获在与超导体耦合的超薄光纤上的原子的混合量子系统

获取原文
获取原文并翻译 | 示例

摘要

Hybrid quantum systems can be formed that combine the strengths of multiple platforms while avoiding the weaknesses. Here we report on progress toward a hybrid quantum system of neutral atom spins coupled to superconducting qubits. We trap laser-cooled rubidium atoms in the evanescent field of an ultrathin optical fiber, which will be suspended a few microns above a superconducting circuit that resonates at the hyperfine frequency of the Rb atoms, allowing magnetic coupling between the atoms and superconductor. As this will be done in a dilution refrigerator environment, the technical demands on the optical fiber is severe. We have developed and optimized a tapered fiber fabrication system, achieving optical transmission in excess of 99.95% , and fibers that can sustain 400 mW of optical power in a UHV environment. We have also optimized tapered fibers that can support higher order optical modes with high transmission (> 97%), which may be useful for different optical potential geometries. We have developed an in-situ tunable high-Q superconducting microwave resonator that can be tuned to within the resonator linewidth of the 6.8 GHz frequency of the Rb hyperfine transition.
机译:可以形成混合量子系统,该系统结合了多个平台的优势,同时避免了这些劣势。在这里,我们报告了中性原子自旋与超导量子位耦合的混合量子系统的进展。我们将激光冷却的atoms原子捕获在超薄光纤的escent逝场中,该场将悬浮在超导电路上方几微米处,该超导电路在Rb原子的超精细频率下发生共振,从而允许原子与超导体之间发生磁耦合。由于这将在稀释冰箱环境中完成,因此对光纤的技术要求非常严格。我们已经开发并优化了锥形光纤制造系统,可实现超过99.95%的光传输,并且光纤可在特高压环境中承受400 mW的光功率。我们还优化了锥形光纤,可以支持具有高透射率(大于97%)的高阶光学模式,这可能适用于不同的光学潜在几何形状。我们已经开发了一种可现场调谐的高Q超导微波谐振器,可以将其调谐到Rb超精细跃迁的6.8 GHz频率的谐振器线宽之内。

著录项

  • 来源
    《Quantum communications and quantum imaging XI 》|2013年|88750L.1-88750L.8|共8页
  • 会议地点 San Diego CA(US)
  • 作者单位

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA,Laboratorie Charles Fabry, Institut d'Optique, CNRS,Univ. Paris Sud, 91127 Palaiseau cedex, France;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park MD 20742, USA;

    Optical Sciences Division, Naval Research Laboratory, Washington DC, 20375., USA;

    Optical Sciences Division, Naval Research Laboratory, Washington DC, 20375., USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hybrid quantum system; quantum network; atom trapping; tapered optical fiber; superconductor;

    机译:混合量子系统量子网络原子陷阱锥形光纤;超导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号