首页> 外文会议>Progress In Electromagnetic Research Symposium >Anomalous topological phases, unpaired dirac cones, and weak antilocalization in helical photonic lattices
【24h】

Anomalous topological phases, unpaired dirac cones, and weak antilocalization in helical photonic lattices

机译:异常拓扑相,不成对的狄拉克锥和螺旋光子晶格中的弱反局部化

获取原文

摘要

Topologically nontrivial photonic lattices can reveal topological effects inaccessible in condensed matter systems, and have promising applications including unidirectional light propagation robust against disorder. The first design scalable to optical frequencies employed the Floquet photonic topological insulator concept, in which a time periodic Floquet Hamiltonian was emulated by a helical waveguide array. While unidirectional edge modes were observed, other interesting effects associated with Floquet topological phases were inaccessible due to the lack of tunable phase transitions and high bending losses in this design. We show that the above limitations can be overcome using a class of staggered helical photonic lattices, employing a novel numerical method to compute their Floquet bandstructure. Topological phase transitions between conventional, Chern, and anomalous Floquet insulating phases can be observed via the simple tuning of a continuous lattice parameter such as its period or refractive index contrast. The anomalous Floquet phase, never before observed in an optical frequency photonic topological insulator, hosts protected edge states despite a vanishing Chern number. The low losses of this design combined with the ability to tune between different phases raises the exciting possibility of nonlinear or actively-controllable photonic lattices with topological protection. At phase boundaries the Floquet bandstructure hosts a single unpaired Dirac cone reminiscent of the surface states of 3D topological insulators and in contrast to the paired cones occurring in conventional lattices such as the honeycomb. The intrinsic chirality of an unpaired cone and the periodicity of the Floquet bandstructure enable the observation of a novel “discrete” conical diffraction. Wave propagation at Dirac cones is intrinsically robust against disorder, with backscattering and localization suppressed by weak antilocalization. Here the weak antilocalization is immune to intervalley scattering processes occurring in conventional paired Dirac bandstructures, and hence it can be observed even under short-ranged, uncorrelated disorder.
机译:拓扑非平凡的光子晶格可以揭示在凝聚态系统中不可访问的拓扑效应,并且具有广阔的应用前景,包括对无序性具有鲁棒性的单向光传播。可扩展到光频率的第一个设计采用了Floquet光子拓扑绝缘子概念,其中通过螺旋形波导阵列模拟了时间周期Floquet哈密顿量。尽管观察到了单向边缘模式,但由于缺乏可调相变和高弯曲损耗,因此无法获得与Floquet拓扑相相关的其他有趣效果。我们表明,可以使用一类交错的螺旋光子晶格,采用一种新颖的数值方法来计算其Floquet带结构,可以克服上述限制。可以通过简单调整连续晶格参数(例如其周期或折射率对比度)来观察常规,切恩和异常Floquet绝缘相之间的拓扑相变。尽管Chern数消失,但异常的Floquet相位却从未在光学频率的光子拓扑绝缘体中观察到,它具有受保护的边缘状态。这种设计的低损耗加上在不同相位之间进行调谐的能力,增加了具有拓扑保护功能的非线性或可主动控制的光子晶格的令人兴奋的可能性。在相界处,Floquet带状结构包含单个不成对的Dirac锥体,让人联想到3D拓扑绝缘体的表面状态,这与在常规晶格(例如蜂窝)中出现的成对锥体相反。不成对锥的固有手征性和Floquet能带结构的周期性使得能够观察到新颖的“离散”圆锥形衍射。狄拉克锥的波传播本质上具有抵抗紊乱的能力,反向散射和局域性被弱的反局域性所抑制。在这里,弱的抗局部化作用不受常规成对的狄拉克能带结构中发生的区间间隔散射过程的影响,因此,即使在短距离,不相关的障碍下也可以观察到。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号