首页> 外文会议>Progress In Electromagnetic Research Symposium >Principles and design of a planar waveguide Fourier transform spectrometer for remote-sensing applications
【24h】

Principles and design of a planar waveguide Fourier transform spectrometer for remote-sensing applications

机译:用于遥感应用的平面波导傅里叶变换光谱仪的原理和设计

获取原文
获取外文期刊封面目录资料

摘要

This paper presents the design and operating principles of an advanced Fourier transform (FT) microspectrometer. The microspectrometer is a static Fourier transform instrument based on the principle of spatial heterodyne spectroscopy (SHS), affording high optical throughput (étendue) as compared with an arrayed waveguide (AWG) or planar waveguide echelle grating spectrometer. The instrument is realized as a densely-packed array of Mach-Zehnder interferometers (MZIs) with linearly increasing optical path delays (OPDs). Each MZI in the array constitutes a sampling point in the discrete Fourier-transform of the optical spectrum. The use of discrete MZIs in this device makes the selection of Fourier samples straightforward, and the throughput advantage permits the development of very high-resolution devices. Using this approach we have developed a 100-MZI FT chip with high resolution (0.05 nm) over a free spectral range (FSR) centered on the Q-branch absorption features of atmospheric methane (1667.75 nm-1665.25 nm). This FT chip is the central component of an integrated microspectrometer payload for measuring greenhouse gas emissions in the Canadian oil sands. The MZI array is realized in silicon nitride and has an overall footprint of 12mm × 22 mm with OPDs ranging from 0.32 mm to 32 mm. The two outputs of each MZI are re-balanced in multi-mode interference (MMI) devices but not combined, resulting in a system with 100 inputs and 200 outputs. Separating the outputs of the MZIs in this manner allows for normalization between MZI arms in order to correct for asymmetric loss in the MZI. High-resolution spectrometers of this type require highly unbalanced MZIs, which may be unstable with respect to temperature. Temperature induced variations may be corrected in postprocessing provided that the variations are made small, this can be accomplished either by active cooling via Peltier system, or passively by the use of athermal waveguides. We have designed athermal waveguides through the use of a cladding material with a negative thermo-optic coefficient (TOC). We balance the modal confinement between the core (positive TOC), lower cladding (positive TOC), and upper cladding (negative TOC) to lower the effective TOC of the device. By design of these athermal waveguides we eliminate the need for a precise active cooling system, reducing the mass, volume, and power requirements of the integrated payload.
机译:本文介绍了一种先进的傅立叶变换(FT)显微光谱仪的设计和工作原理。显微光谱仪是基于空间外差光谱(SHS)原理的静态傅立叶变换仪器,与阵列波导(AWG)或平面波导阶梯光栅光谱仪相比,具有较高的光通量(etendue)。该仪器实现为密堆积的Mach-Zehnder干涉仪(MZI)阵列,线性增加了光程延迟(OPD)。阵列中的每个MZI构成光谱的离散傅里叶变换中的采样点。在该设备中使用离散的MZI使傅里叶样本的选择变得简单,并且吞吐量优势允许开发非常高分辨率的设备。使用这种方法,我们开发了一种100-MZI FT芯片,该芯片在自由光谱范围(FSR)上具有高分辨率(0.05 nm),该光谱以大气甲烷(1667.75 nm-1665.25 nm)的Q分支吸收特征为中心。 FT芯片是用于测量加拿大油砂中温室气体排放量的集成显微光谱仪有效载荷的核心组件。 MZI阵列以氮化硅实现,总占地面积为12mm×22mm,OPD范围为0.32mm至32mm。每个MZI的两个输出在多模干扰(MMI)设备中重新平衡,但没有合并,因此系统具有100个输入和200个输出。以这种方式分离MZI的输出允许在MZI支路之间进行归一化,以校正MZI中的不对称损耗。这种类型的高分辨率光谱仪需要高度不平衡的MZI,这些MZI可能相对于温度不稳定。只要引起的温度变化较小,就可以在后处理中进行校正,这可以通过Peltier系统进行主动冷却,也可以通过使用无热波导进行被动冷却来实现。我们通过使用具有负热光系数(TOC)的包层材料设计了无热波导。我们在纤芯(正TOC),下部包层(正TOC)和上部包层(负TOC)之间进行模态限制,以降低器件的有效TOC。通过设计这些无热波导,我们消除了对精确主动冷却系统的需求,从而减少了集成有效负载的质量,体积和功率需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号